RESUMO
The photoperiod has been evidenced to influence sleep regulation in the rat. Nevertheless, lengthening of the photoperiod beyond 30 days seems to have little effect on the 24-hr baseline level of sleep and the response to total sleep deprivation. We studied the effects of 12:12 (habitual) and 16:8 (long) light-dark photoperiods on sleep, locomotor activity and body core temperature, before and after 24 hr of total sleep deprivation. Eight rats were submitted for 14 days to light-dark 12:12 (lights on: 08:00 hours-20:00 hours) followed by total sleep deprivation, and then for 14 days to light-dark 16:8 (light extended to 24:00 hours) followed by total sleep deprivation. Rats were simultaneously recorded for electroencephalogram, locomotor activity and body core temperature for 24 hr before and after total sleep deprivation. At baseline before total sleep deprivation, total sleep time and non-rapid eye movement sleep per 24 hr and during extended light hours (20:00 hours-24:00 hours) were higher (13% for total sleep time) after light-dark exposure compared with habitual photoperiod, while percentage delta power in non-rapid eye movements and rapid eye movements were unchanged. Locomotor activity and body core temperature were lower, particularly during extended light hours (20:00 hours-24:00 hours). Following total sleep deprivation, total sleep time and non-rapid eye movements were significantly lower after long photoperiod between 20:00 hours and 24:00 hours, and between 10:00 hours and 12:00 hours, and unchanged per 24 hr. The percentage delta power in non-rapid eye movements was lower between 08:00 hours and 11:00 hours. Total sleep deprivation decreased locomotor activity and body core temperature after habitual photoperiod exposure only. Fourteen days under long photoperiod (light-dark 16:8) increased non-rapid eye movements sleep, and decreased sleep rebound related to total sleep deprivation (lower non-rapid eye movements duration and delta power). This may create a model of sleep extension for the rat that has been found to favour anabolism in the brain and the periphery.
Assuntos
Fotoperíodo , Polissonografia/métodos , Privação do Sono/fisiopatologia , Sono/fisiologia , Animais , Masculino , Ratos , Ratos WistarRESUMO
Extended sleep improves sustained attention and reduces sleep pressure in humans. Downregulation of adenosine A1 receptor (A1R) and modulation of the neurotrophic factor insulin growth factor-1 (IGF-I) in brain structures controlling attentional capacities could be involved. In the frontal cortex and hippocampus of rats, we measured adenosine A1R and IGF-I protein concentrations after photoperiod-induced sleep extension. Two groups of twelve rats were adapted over 14 days to a habitual (CON) 12:12 light-dark (LD) schedule and an extended (EXT) 16:8 LD schedule. IGF-I content was also measured in plasma, liver, and skeletal muscle. In EXT, compared to CON rats, A1R content in the frontal cortex was significantly lower (p < 0.05), while IGF-I content was higher (p < 0.001), and no significant change was observed in the hippocampus. IGF-I content in plasma and muscle was higher (p < 0.001 and p < 0.01), while it was lower in liver (p < 0.001). The absolute weight and weight gain were higher in EXT rats (p < 0.01). These data suggest that 14 days under a 16:8 LD photoperiod respectively down- and upregulated cortical A1R and IGF-I levels. This photoperiod induced an anabolic profile with increased weight gain and circulating and muscular IGF-I levels. An extension of sleep duration might favor cerebral and peripheral anabolism, which may help attentional and physical capacities.
Assuntos
Lobo Frontal/metabolismo , Hipocampo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Receptor A1 de Adenosina/metabolismo , Sono/fisiologia , Animais , Peso Corporal/fisiologia , Hormônios/metabolismo , Humanos , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Fotoperíodo , Ratos , Ratos Wistar , Fatores de Tempo , Aumento de Peso/fisiologiaRESUMO
Adding relaxation techniques during nap or auditory stimulation of EEG slow oscillation (SO) during nighttime sleep may limit cognitive impairments in sleep-deprived subjects, potentially through alleviating stress-releasing effects. We compared daytime sleepiness, cognitive performances, and salivary stress biomarker responses in 11 volunteers (aged 18-36) who underwent 5 days of sleep restriction (SR, 3 h per night, with 30 min of daily nap) under three successive conditions: control (SR-CT), relaxation techniques added to daily nap (SR-RT), and auditory stimulation of sleep slow oscillations (SO) during nighttime sleep (SR-NS). Test evaluation was performed at baseline (BASE), the fifth day of chronic SR (SR5), and the third and fifth days after sleep recovery (REC3, REC5, respectively). At SR5, less degradation was observed for percentage of commission errors in the executive Go-noGo inhibition task in SR-RT condition compared to SR-CT, and for sleepiness score in SR-NS condition compared both to SR-CT and SR-RT. Beneficial effects of SR-RT and SR-NS were additionally observed on these two parameters and on salivary α-amylase (sAA) at REC3 and REC5. Adding relaxation techniques to naps may help performance in inhibition response, and adding nocturnal auditory stimulation of SO sleep may benefit daytime sleepiness during sleep restriction with persistent effects during recovery. The two strategies activated the autonomic nervous system, as shown by the sAA response.
RESUMO
Several genetic polymorphisms differentiate between healthy individuals who are more cognitively vulnerable or resistant during total sleep deprivation (TSD). Common metrics of cognitive functioning for classifying vulnerable and resilient individuals include the Psychomotor Vigilance Test (PVT), Go/noGo executive inhibition task, and subjective daytime sleepiness. We evaluated the influence of 14 single-nucleotide polymorphisms (SNPs) on cognitive responses during total sleep deprivation (continuous wakefulness for 38 h) in 47 healthy subjects (age 37.0 ± 1.1 years). SNPs selected after a literature review included SNPs of the adenosine-A2A receptor gene (including the most studied rs5751876), pro-inflammatory cytokines (TNF-α, IL1-ß, IL-6), catechol-O-methyl-transferase (COMT), and PER3. Subjects performed a psychomotor vigilance test (PVT) and a Go/noGo-inhibition task, and completed the Karolinska Sleepiness Scale (KSS) every 6 h during TSD. For PVT lapses (reaction time >500 ms), an interaction between SNP and SDT (p < 0.05) was observed for ADORA2A (rs5751862 and rs2236624) and TNF-α (rs1800629). During TSD, carriers of the A allele for ADORA2A (rs5751862) and TNF-α were significantly more impaired for cognitive responses than their respective ancestral G/G genotypes. Carriers of the ancestral G/G genotype of ADORA2A rs5751862 were found to be very similar to the most resilient subjects for PVT lapses and Go/noGo commission errors. Carriers of the ancestral G/G genotype of COMT were close to the most vulnerable subjects. ADORA2A (rs5751862) was significantly associated with COMT (rs4680) (p = 0.001). In conclusion, we show that genetic polymorphisms in ADORA2A (rs5751862), TNF-α (rs1800629), and COMT (rs4680) are involved in creating profiles of high vulnerability or high resilience to sleep deprivation. (NCT03859882).
RESUMO
We previously showed that an acute stress-induced an early corticosterone rise in the dorsal hippocampus (dHPC) and a delayed one in the ventral hippocampus (vHPC). Congruently, we hypothesized that the dHPC may influence the time-course evolution of poststress glucocorticoid rise in the vHPC. To probe this issue, we performed ibotenic acid lesions of the dHPC and measured by microdialysis the time-course evolution of corticosterone rise in the vHPC after an acute stress delivery. In nonstress condition, we showed that the dHPC lesion induced a significant increase of corticosterone both in plasma and in the vHPC. In addition, an acute stress (electric footshocks) induced a faster and more sustained corticosterone rise in the vHPC of dHPC-lesioned animals, as compared to sham-operated ones. This study provides new found evidence to the effect that the dHPC lesion alters the time-course evolution of corticosterone rise within the vHPC after stress.
Assuntos
Corticosterona/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Fatores de Tempo , Animais , Glucocorticoides/efeitos adversos , Masculino , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Microdiálise/métodos , Lobo Temporal/metabolismoRESUMO
Sleep loss is associated with sleepiness, sustained attention, and memory deficits. However, vulnerability of higher cognitive processes (i.e. decision making) to sleep debt is less understood. Therefore, a major challenge is to understand why and how higher cognitive processes are affected by sleep debt. We had established in mice correlations between individual decision-making strategies, prefrontal activity, and regional monoaminergic levels. Now, we show that acute sleep debt (ASD) disturbs decision-making processes and provokes brain regional modifications of serotonin and dopamine that could explain why ASD promotes inflexible and more risk-prone behaviors. Finally, we highlight, for the first time, that in a large group of healthy inbred mice some of them are more sensitive to ASD by showing inflexible behavior and decision-making deficits. We were also able to predict mice that would be the most vulnerable to ASD depending of their behavior before ASD exposure.
Assuntos
Tomada de Decisões/fisiologia , Jogo de Azar/metabolismo , Córtex Pré-Frontal/química , Córtex Pré-Frontal/metabolismo , Privação do Sono/metabolismo , Animais , Dopamina/metabolismo , Jogo de Azar/psicologia , Masculino , Camundongos , Serotonina/metabolismo , Sono/fisiologia , Privação do Sono/psicologiaRESUMO
Insufficient sleep is a common occurrence in occupational settings (e.g. doctors, drivers, soldiers). The resulting sleep debt can lead to daytime sleepiness, fatigue, mood disorder, and cognitive deficits as well as altered vascular, immune and inflammatory responses. Short daytime naps have been shown to be effective at counteracting negative outcomes related to sleep debt with positive effects on daytime sleepiness and performance after a normal or restricted night of sleep in laboratory settings. However, the environmental settings in the workplace and the emotional state of workers are generally not conducive to beneficial effects. Here, we tested whether relaxation techniques (RT) involving hypnosis might increase total sleep time (TST) and/or deepen sleep. In this study, eleven volunteers (aged 37-52) took six early-afternoon naps (30 min) in their occupational workplace, under two different conditions: control 'Naps' or 'Naps + RT' with a within-subjects design. Our results demonstrate that adding RT to naps changes sleep architecture, with a significant increase in the TST, mostly due to N2 sleep stage (and N3, to a lesser extent). Therefore, the deepening of short naps with RT involving hypnosis might be a successful non-pharmacological way to extend sleep duration and to deepen sleep in occupational settings.
Assuntos
Hipnose/métodos , Terapia de Relaxamento/métodos , Sono/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Militares/psicologia , Fases do Sono/fisiologia , Local de Trabalho/psicologiaRESUMO
We aimed at demonstrating that corticosteroid binding globulin (CBG), a plasma glycoprotein binding glucocorticoids with high affinity in blood, endorses a major role under stress conditions by regulating free glucocorticoid access to the brain and thereby influences glucocorticoid-dependent behaviors. Hence, we compared CBG-deficient mice (Cbg-/-) and their controls (Cbg+/+) in a specific memory task, i.e. the delayed alternation behavior, requiring memory retrieval both under stress and nonstress conditions and previously shown to be dependent on hippocampal glucocorticoid levels. Our results evidence that Cbg-/- mice, unlike controls, remain insensitive to stress applied before memory retrieval. Furthermore, under stress conditions, we observed a blunted surge of corticosterone (CORT) in plasma and no free CORT rise in the hippocampus of Cbg-/-. Moreover, intrahippocampal infusion of CORT through implanted cannulae was used to mimic stress CORT rise before memory retrieval. This infusion of CORT reproduced memory retrieval impairments in Cbg-/- as in Cbg+/+ controls. Finally, we provide evidence that Cbg-/- mice exhibit a normal adrenal response to stress and ACTH. Given that CBG deficiency is known to markedly impact on CORT clearance from plasma, our current article demonstrates that Cbg-/- insensitivity in memory retrieval after stress results from the blunted CORT response due to increased CORT clearance. Overall, our data suggest that the impact of CBG genetic deficiency on various behavioral patterns reported previously stems from a smaller CORT reservoir in blood. Inasmuch as CBG discloses interindividual variations, such a parameter ought to be taken into account when studying stress-induced glucocorticoid action in brain.
Assuntos
Corticosterona/farmacologia , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Transcortina/genética , Glândulas Suprarrenais/metabolismo , Animais , Corticosterona/sangue , Expressão Gênica , Hipocampo/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Transporte Proteico , Estresse Psicológico/metabolismo , Transcortina/metabolismoRESUMO
Benzodiazepines (BDZ) are widely prescribed in the treatment of anxiety disorders associated to aging. Interestingly, whereas a reciprocal interaction between the GABAergic system and HPA axis has been evidenced, there is to our knowledge no direct evaluation of the impact of BDZ on both hippocampus (HPC) corticosterone concentrations and HPC-dependent memory in stressed middle-aged subjects. We showed previously that an acute stress induced in middle-aged mice severe memory impairments in a hippocampus-dependent task, and increased in parallel hippocampus corticosterone concentrations, as compared to non-stressed middle-aged controls (Tronche et al., 2010). Based on these findings, the aims of the present study were to evidence the impact of diazepam (a positive allosteric modulator of the GABA-A receptor) on HPC glucocorticoids concentrations and in parallel on HPC-dependent memory in acutely stressed middle-aged mice. Microdialysis experiments showed an interaction between diazepam doses and corticosterone concentrations into the HPC. From 0.25 to 0.5 mg/kg, diazepam dose-dependently reduces intra-HPC corticosterone concentrations and in parallel, dose-dependently increased hippocampal-dependent memory performance. In contrast, the highest (1.0 mg/kg) diazepam dose induces a reduction in HPC corticosterone concentration, which was of greater magnitude as compared to the two other diazepam doses, but however decreased the hippocampal-dependent memory performance. In summary, our study provides first evidence that diazepam restores in stressed middle-aged animals the hippocampus-dependent response, in relation with HPC corticosterone concentrations. Overall, our data illustrate how stress and benzodiazepines could modulate cognitive functions depending on hippocampus activity.
RESUMO
This study was aimed at determining the type of the glucocorticoid membrane receptors (mineralocorticoid receptors (MRs) or glucocorticoid receptors (GRs)) in the dorsal hippocampus (dHPC) involved in the rapid effects of corticosterone or stress on memory retrieval. For that purpose, we synthesized corticosterone-3-O-carboxymethyloxime-bovine serum albumin conjugate (Cort-3CMO-BSA) conjugate (a high MW complex that cannot cross the cell membrane) totally devoid of free corticosterone, stable in physiological conditions. In a first experiment, we evidenced that an acute stress (electric footshocks) induced both a dHPC corticosterone rise measured by microdialysis and memory retrieval impairment on delayed alternation task. Both the endocrinal and cognitive effects of stress were blocked by metyrapone (a corticosterone synthesis inhibitor). In a second experiment, we showed that bilateral injections of either corticosterone or Cort-3CMO-BSA in dHPC 15 min before memory testing produced impairments similar to those resulting from acute stress. Furthermore, we showed that anisomycin (a protein synthesis inhibitor) failed to block the deleterious effect of Cort-3CMO-BSA on memory. In a third experiment, we evidenced that intra-hippocampal injection of RU-28318 (MR antagonist) but not of RU-38486 (GR antagonist) totally blocked the Cort-3CMO-BSA-induced memory retrieval deficit. In a fourth experiment, we demonstrated that RU-28318 administered 15 min before stress blocked the stress-induced memory impairments when behavioral testing occurred 15 min but not 60 min after stress. Overall, this study provides strong in vivo evidence that the dHPC membrane GRs, mediating the rapid and non-genomic effects of acute stress on memory retrieval, are of MR but not GR type.