Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tree Physiol ; 43(8): 1290-1306, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36930058

RESUMO

Drought is projected to occur more frequently and intensely in the coming decades, and the extent to which it will affect forest functioning will depend on species-specific responses to water stress. Aiming to understand the hydraulic traits and water dynamics behind water-saver and water-spender strategies in response to drought and recovery, we conducted a pot experiment with two species with contrasting physiological strategies, Scots pine (Pinus sylvestris L.) and Portuguese oak (Quercus faginea L.). We applied two cycles of soil drying and recovery and irrigated with isotopically different water to track fast changes in soil and stem water pools, while continuously measuring physiological status and xylem water content from twigs. Our results provide evidence for a tight link between the leaf-level response and the water uptake and storage patterns in the stem. The water-saver strategy of pines prevented stem dehydration by rapidly closing stomata which limited their water uptake during the early stages of drought and recovery. Conversely, oaks showed a less conservative strategy, maintaining transpiration and physiological activity under dry soil conditions, and consequently becoming more dehydrated at the stem level. We interpreted this dehydration as the release of water from elastic storage tissues as no major loss of hydraulic conductance occurred for this species. After soil rewetting, pines recovered pre-drought leaf water potential rapidly, but it took longer to replace the water from conductive tissues (slower labeling speed). In contrast, water-spender oaks were able to quickly replace xylem water during recovery (fast labeling speed), but it took longer to refill stem storage tissues, and hence to recover pre-drought leaf water potential. These different patterns in sap flow rates, speed and duration of the labeling reflected a combination of water-use and storage traits, linked to the leaf-level strategies in response to drought and recovery.


Assuntos
Pinus sylvestris , Quercus , Desidratação , Secas , Transporte Biológico , Dessecação , Solo
2.
Environ Sci Pollut Res Int ; 22(20): 15479-94, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26006069

RESUMO

Toxic effects of copper (Cu) were analyzed in young plants of Inga subnuda subs. luschnathiana, a species that is highly tolerant to flooding and found in Brazil in wetlands contaminated with Cu. Plants were cultivated in fully nutritive solution, containing different concentrations of Cu (from 0.08 µmol to 0.47 mmol L(-1)). Symptoms of Cu toxicity were observed in both leaves and roots of plants cultivated from 0.16 mmol Cu L(-1). In the leaves, Cu clearly induced alterations in the thickness of the epidermis, mesophyll, palisade parenchyma, and intercellular space of the lacunose parenchyma. Also, this metal induced disorganization in thylakoid membranes, internal and external membrane rupture in chloroplasts, mitochondrial alterations, and electrodense material deposition in vacuoles of the parenchyma and cell walls. The starch grains disappeared; however, an increase of plastoglobule numbers was observed according to Cu toxicity. In the roots, destruction of the epidermis, reduction of the intercellular space, and modifications in the format of initial cells of the external cortex were evident. Cell walls and endoderm had been broken, invaginations of tonoplast and vacuole retractions were found, and, again, electrodense material was observed in these sites. Mineral nutrient analysis revealed higher Cu accumulation in the roots and greater macro- and micronutrients accumulation into shoots. Thus, root morphological and ultrastructural changes induced differential nutrients uptake and their translocations from root toward shoots, and this was related to membrane and endoderm ruptures caused by Cu toxicity.


Assuntos
Cobre/toxicidade , Fabaceae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Brasil , Oxalato de Cálcio/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cobre/análise , Fabaceae/metabolismo , Fabaceae/ultraestrutura , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Tilacoides/metabolismo , Poluentes Químicos da Água/análise , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA