Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38808737

RESUMO

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Assuntos
Extratos Vegetais , Ratos Wistar , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Animais , Humanos , Ratos , Linhagem Celular Tumoral , Masculino , Ensaio Cometa , Testes para Micronúcleos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/análise , Camundongos , Casca de Planta/química , Mutagênicos/toxicidade , Testes de Mutagenicidade , Etanol/química
2.
J Toxicol Environ Health A ; 86(16): 557-574, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37350297

RESUMO

This study aimed to characterize the phytochemical profile of bark and leaves aqueous extract Commiphora leptophloeos, and conduct in vivo and in vitro assays to determine the presence of any toxicological consequences due to exposure. The phytochemical analysis was carried out using high-performance liquid chromatography (HPLC). The antioxidant activity was estimated utilizing DPPH free radical scavenging and phosphomolybdenum assays. Cell viability was measured by the MTT method on J774 and human adenocarcinoma cells, which were treated with concentrations of 12,5, 25, 50, 100 or 200 µg/ml of both extracts. Acute oral toxicity, genotoxicity, and mutagenicity assays were determined using a single oral dose of 2000 g/kg in male Swiss albino mice (Mus musculus). Biochemical analysis of the blood and histological analyses of the kidneys, liver, spleen, pylorus, duodenum and jejunum were undertaken. Genotoxicity and mutagenicity were determined utilizing blood samples. Gallic acid, catechin, and epicatechin were identified in the bark and chlorogenic acid in leaves. Data demonstrated a high content of phenolic compounds and flavonoids associated with significant antioxidant potential. No significant signs in damage or symptoms of toxicity were detected. No marked reduction in cell viability was found at lower concentrations tested. On histomorphometry, only the gastrointestinal organs exhibited significant difference. Renal hepatic and blood parameters were within the normal range. No apparent signs of toxicity, genotoxicity, mutagenicity or cytotoxicity were found in vivo and in vitro experiments.


Assuntos
Antioxidantes , Catequina , Camundongos , Animais , Masculino , Humanos , Antioxidantes/química , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Commiphora , Casca de Planta/química , Compostos Fitoquímicos/toxicidade , Folhas de Planta/química
3.
J Toxicol Environ Health A ; 82(3): 216-231, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30849290

RESUMO

The objective of this study was to determine the cytotoxicity of organic extracts of P. moniliformis in vitro and identify the acute toxicity and genotoxicity in vivo. The leaves were extracted using three organic solvents (cyclohexane [EP1], ethyl acetate [EP2], and methanol [EP3]). Phytochemical qualitative analysis was performed by thin layer chromatography (TLC). Cytotoxicity tests were performed on human embryonic kidney (HEK) cells and J774 murine macrophages. Acute toxicity in mice was measured after intraperitoneal (ip) administration of 2000 mg/kg, while evaluation of genotoxicity and mutagenicity were assessed using the comet assay and the micronucleus (MN) test, respectively. The TLC analysis of the extracts revealed the presence of flavonoids, triterpenes, steroids, and saponins. In the cytotoxicity assay, extracts EP1 and EP3 altered proliferation of HEK cells, and all organic extracts increased the viability of J774 cells. In the toxicity tests, no deaths or behavioral alterations were observed in mice exposed to the acute dose of the extracts. Although some extracts led to changes in hematological and histological parameters, these results did not indicate physiological changes. In relation to the MN test and comet assay, no significant changes were detected in the DNA of the animals tested with the extracts EP1, EP2, and EP3. Thus, extracts of P. moniliformis were not considered to be toxic and did not induce formation of MN or damage to cellular DNA in the genotoxicity tests.


Assuntos
Citotoxinas/toxicidade , Embrião de Mamíferos/efeitos dos fármacos , Fabaceae/toxicidade , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Folhas de Planta/toxicidade , Animais , Células Cultivadas/efeitos dos fármacos , Fabaceae/química , Humanos , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Modelos Animais , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Plantas Medicinais/toxicidade
4.
J Ethnopharmacol ; 303: 115955, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436714

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Members of the Psidium genus have been suggested in ethnobotanical research for the treatment of various human diseases, and some studies have already proven their popular uses through research, such as Psidium glaziovianum, which is found in Brazil's northeast and southeast regions and has antinociceptive and anti-inflammatory properties; however, the safety of use has not yet been evaluated. AIM OF THE STUDY: This study investigated the safety of using essential oil obtained from P. glaziovianum leaves (PgEO) in vitro and in vivo models. MATERIALS AND METHODS: Cytotoxicity was evaluated in murine erythrocytes, while acute toxicity, genotoxicity (comet assay) and mutagenicity (micronucleus test) studies were performed using Swiss albino mice. RESULTS: In the cytotoxicity assay, the hemolysis rate indicated a low capacity of PgEO to cause cell lysis (0.33-1.78%). In the acute oral toxicity study, animals treated with up to up to 5000 mg/kg body weight did not observe mortality or physiological changes. Neither dosage caused behavioral problems or death in mice over 14 days. The control and 2,000 mg/kg groups had higher feed intake and body weight than the 5,000 mg/kg PgEO group. Erythrocyte count, hemoglobin level, mean corpuscular volume, and MCV decreased, but serum alanine and aspartate aminotransferases increased. In the genotoxic evaluation, 5000 mg/kg PgEO enhanced nucleated blood cell DI and DF. CONCLUSIONS: The present study describes that PgEO can be considered well tolerated in acute exposure at doses up to 2000 mg/kg, however the dose of 5000 mg/kg of PgEO should be used with caution.


Assuntos
Óleos Voláteis , Psidium , Camundongos , Humanos , Animais , Óleos Voláteis/farmacologia , Mutagênicos , Dano ao DNA , Ensaio Cometa , Extratos Vegetais/farmacologia , Testes de Mutagenicidade
5.
J Ethnopharmacol ; 272: 113941, 2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-33610703

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Syagrus coronata, popularly known as licuri, is a palm native to caatingas. The fixed oil extract of licuri nuts is used by the population of Northeast Brazil for therapeutic purposes, including as an antifungal, anti-inflammatory, and a cicatrizant agent. However, there is no scientific information on the possible harmful health effects of the oil and hence its medicinal usability is unknown. AIM OF THE STUDY: We aimed to analyze the biological safety and possible antioxidant activity of fixed S. Coronata oil. MATERIALS AND METHODS: Chemical analysis of the oil was performed using gas chromatography with flame ionization detection (CG-FID). The cytotoxicity of varying concentrations of the oil (12.5, 25, 50, 100, and 200 µg/mL) was evaluated using the tetrazolium reduction assay in three cell lines: HEK-293 kidney embryonic cells, J774.A1 macrophages, and the tumor line Sarcoma-180 (S-180). Oral toxicity, genotoxicity, and mutagenicity tests were performed in mice which were administered a single dose of 2000 mg/kg of fixed licuri oil, by gavage. For acute toxicity tests, changes in blood and biochemical parameters, behavior, and weight were analyzed; histomorphometric analyses of the liver, kidney, and spleen were also performed. The comet assay and micronucleus (MN) test were performed to analyze genotoxicity. The antioxidant potential was assessed by the total antioxidant capacity (AAT) and DPPH elimination activity. RESULTS: Licuri oil consists predominantly of saturated fatty acids, and lauric acid is the major compound. The highest concentrations of the oil showed low levels of cytotoxicity; however, LC50 was not reached in any of the tests. The acute toxicity study did not reveal any evidence of adverse effects in animals treated with oil; biochemical investigation of blood showed a decrease in blood concentration of total proteins and uric acid. The kidneys, spleen, and liver showed no morphological changes indicative of a pathological process. Genotoxic or mutagenic activity was not detected through both the comet assay and MN test. In addition, the oil showed low antioxidant activity in both methods. CONCLUSION: Licuri oil from the stem of S. coronata did not present significant toxic effects as well as absence of genetic damage when administered orally. Future studies are needed to investigate its pharmacological potential.


Assuntos
Arecaceae/química , Dano ao DNA/efeitos dos fármacos , Óleo de Palmeira/farmacologia , Administração Oral , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Ácidos Graxos/análise , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Testes para Micronúcleos , Testes de Mutagenicidade , Óleo de Palmeira/administração & dosagem , Óleo de Palmeira/toxicidade , Baço/efeitos dos fármacos , Testes de Toxicidade Aguda
6.
J Ethnopharmacol ; 253: 112567, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32027999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Himatanthus drasticus is a tree popularly known as janaguba. Endemic to Brazil, it is found in the Cerrado and Caatinga biomes, rock fields, and rainforests. Janaguba latex has been used in folk medicine for its antineoplastic, anti-inflammatory, analgesic, and antiallergic activities. However, studies investigating the safety of its use for medicinal purposes are limited. AIM OF THE STUDY: This study aimed to evaluate the toxicity of the latex extracted from H. drasticus. MATERIALS AND METHODS: The latex was extracted from H. drasticus specimens by removing a small area of bark (5 × 30 cm) and then dissolving the exudate in water and lyophilizing it. Phytochemical screening was performed by TLC and GC-MS, protein, and carbohydrate levels. Cell viability was performed by the MTT method. Acute oral toxicity, genotoxicity, and mutagenicity assays were performed in mice. RESULTS: TLC showed the presence of saponins and reducing sugars, as well as steroids and terpenes. The GC-MS analysis of the nonpolar fraction identified lupeol acetate, betulin, and α/ß-amyrin derivatives as the major compounds. The latex was toxic to S-180 cells at 50 and 100 µg/mL. No signals of toxicity or mutagenicity was found in mice treated with 2000 mg/kg of the latex, but genotoxicity was observed in the Comet assay. CONCLUSIONS: H. drasticus latex showed toxicity signals at high doses (2000 mg/kg). Although the latex was not mutagenic to mice, it was genotoxic in the Comet assay in our experimental conditions. Even testing a limit dose of 2000 mg/kg, which is between 10 to 35-fold the amount used in folk medicine, caution must be taken since there is no safe level for genotoxic compounds exposure. Further studies on the toxicological aspects of H. drasticus latex are necessary to elucidate its possible mechanisms of genotoxicity.


Assuntos
Apocynaceae/química , Látex/toxicidade , Mutagênicos/toxicidade , Animais , Linhagem Celular Tumoral , Ensaio Cometa , Relação Dose-Resposta a Droga , Humanos , Látex/administração & dosagem , Látex/isolamento & purificação , Masculino , Camundongos , Mutagênicos/administração & dosagem , Mutagênicos/isolamento & purificação , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA