Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Med Microbiol ; 309(8): 151355, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31563331

RESUMO

Staphylococcus petrasii is recently described coagulase negative staphylococcal species and an opportunistic human pathogen, still often misidentified in clinical specimens. Four subspecies are distinguished in S. petrasii by polyphasic taxonomical analyses, however a comparative study has still not been done on the majority of isolates and their genome properties have not yet been thoroughly analysed. Here, we describe the phenotypic and genotypic characteristics of 65 isolates and the results of de novo sequencing, whole genome assembly and annotation of draft genomes of five strains. The strains were identified by MALDI-TOF mass spectrometry to the species level and the majority of the strains were identified to the subspecies level by fingerprinting methods, (GTG)5 repetitive PCR and ribotyping. Macrorestriction profiling by pulsed-field gel electrophoresis was confirmed to be a suitable strain typing method. Comparative genomics revealed the presence of new mobile genetic elements carrying antimicrobial resistance factors such as staphylococcal cassette chromosome (SCC) mec, transposones, phage-inducible genomic islands, and plasmids. Their mosaic structure and similarity across coagulase-negative staphylococci and Staphylococcus aureus suggest the possible exchange of these elements. Numerous putative virulence factors such as adhesins, autolysins, exoenzymes, capsule formation genes, immunomodulators, the phage-associated sasX gene, and SCC-associated spermidine N-acetyltransferase gene, pseudouridine and sorbitol utilization operons might explain clinical manifestations of S. petrasii isolates. The increasing recovery of S. petrasii isolates from human clinical material, the multi-drug resistance including methicillin resistance of S. petrasii subsp. jettensis strains, and virulence factors homologous to other pathogenic staphylococci demonstrate the importance of the species in human disease.


Assuntos
Genoma Bacteriano , Sequências Repetitivas Dispersas , Staphylococcus/genética , Fatores de Virulência/genética , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Genômica , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Ribotipagem , Staphylococcus/classificação , Staphylococcus/patogenicidade
2.
Proc Natl Acad Sci U S A ; 113(33): 9351-6, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27469164

RESUMO

Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release.


Assuntos
Genoma Viral , Myoviridae/genética , Myoviridae/ultraestrutura , Staphylococcus aureus/virologia , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/fisiologia
3.
Appl Environ Microbiol ; 84(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079617

RESUMO

Two Gram-stain-positive, coagulase-negative staphylococcal strains were isolated from abiotic sources comprising stone fragments and sandy soil in James Ross Island, Antarctica. Here, we describe properties of a novel species of the genus Staphylococcus that has a 16S rRNA gene sequence nearly identical to that of Staphylococcus saprophyticus However, compared to S. saprophyticus and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85% and inferred DNA-DNA hybridization of <30%. It forms a separate branch in the S. saprophyticus phylogenetic clade as confirmed by multilocus sequence analysis of six housekeeping genes, rpoB, hsp60, tuf, dnaJ, gap, and sod Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and key biochemical characteristics allowed these bacteria to be distinguished from their nearest phylogenetic neighbors. In contrast to S. saprophyticus subsp. saprophyticus, the novel strains are pyrrolidonyl arylamidase and ß-glucuronidase positive and ß-galactosidase negative, nitrate is reduced, and acid produced aerobically from d-mannose. Whole-genome sequencing of the 2.69-Mb large chromosome revealed the presence of a number of mobile genetic elements, including the 27-kb pseudo-staphylococcus cassette chromosome mec of strain P5085T (ψSCCmecP5085), harboring the mecC gene, two composite phage-inducible chromosomal islands probably essential to adaptation to extreme environments, and one complete and one defective prophage. Both strains are resistant to penicillin G, ampicillin, ceftazidime, methicillin, cefoxitin, and fosfomycin. We hypothesize that antibiotic resistance might represent an evolutionary advantage against beta-lactam producers, which are common in a polar environment. Based on these results, a novel species of the genus Staphylococcus is described and named Staphylococcus edaphicus sp. nov. The type strain is P5085T (= CCM 8730T = DSM 104441T).IMPORTANCE The description of Staphylococcus edaphicus sp. nov. enables the comparison of multidrug-resistant staphylococci from human and veterinary sources evolved in the globalized world to their geographically distant relative from the extreme Antarctic environment. Although this new species was not exposed to the pressure of antibiotic treatment in human or veterinary practice, mobile genetic elements carrying antimicrobial resistance genes were found in the genome. The genomic characteristics presented here elucidate the evolutionary relationships in the Staphylococcus genus with a special focus on antimicrobial resistance, pathogenicity, and survival traits. Genes encoded on mobile genetic elements were arranged in unique combinations but retained conserved locations for the integration of mobile genetic elements. These findings point to enormous plasticity of the staphylococcal pangenome, shaped by horizontal gene transfer. Thus, S. edaphicus can act not only as a reservoir of antibiotic resistance in a natural environment but also as a mediator for the spread and evolution of resistance genes.


Assuntos
Adaptação Biológica/genética , Frio Extremo , Ambientes Extremos , Genes Bacterianos/fisiologia , Ilhas Genômicas/fisiologia , Staphylococcus/classificação , Regiões Antárticas , Staphylococcus/genética , Staphylococcus/fisiologia
4.
Virus Genes ; 54(1): 130-139, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28852930

RESUMO

The spontaneous host-range mutants 812F1 and K1/420 are derived from polyvalent phage 812 that is almost identical to phage K, belonging to family Myoviridae and genus Kayvirus. Phage K1/420 is used for the phage therapy of staphylococcal infections. Endolysin of these mutants designated LysF1, consisting of an N-terminal cysteine-histidine-dependent aminohydrolase/peptidase (CHAP) domain and C-terminal SH3b cell wall-binding domain, has deleted middle amidase domain compared to wild-type endolysin. In this work, LysF1 and both its domains were prepared as recombinant proteins and their function was analyzed. LysF1 had an antimicrobial effect on 31 Staphylococcus species of the 43 tested. SH3b domain influenced antimicrobial activity of LysF1, since the lytic activity of the truncated variant containing the CHAP domain alone was decreased. The results of a co-sedimentation assay of SH3b domain showed that it was able to bind to three types of purified staphylococcal peptidoglycan 11.2, 11.3, and 11.8 that differ in their peptide bridge, but also to the peptidoglycan type 11.5 of Streptococcus uberis, and this capability was verified in vivo using the fusion protein with GFP and fluorescence microscopy. Using several different approaches, including NMR, we have not confirmed the previously proposed interaction of the SH3b domain with the pentaglycine bridge in the bacterial cell wall. The new naturally raised deletion mutant endolysin LysF1 is smaller than LysK, has a broad lytic spectrum, and therefore is an appropriate enzyme for practical use. The binding spectrum of SH3b domain covering all known staphylococcal peptidoglycan types is a promising feature for creating new chimeolysins by combining it with more effective catalytic domains.


Assuntos
Endopeptidases/genética , Endopeptidases/metabolismo , Especificidade de Hospedeiro , Myoviridae/enzimologia , Peptidoglicano/metabolismo , Deleção de Sequência , Staphylococcus/virologia , Endopeptidases/isolamento & purificação , Proteínas Mutantes/genética , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Myoviridae/genética , Myoviridae/fisiologia , Ligação Proteica , Domínios Proteicos
5.
Int J Med Microbiol ; 307(6): 291-296, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28579477

RESUMO

Exfoliative toxin B (ETB) encoded by some large plasmids plays a crucial role in epidermolytic diseases caused by Staphylococcus aureus. We have found as yet unknown types of etb gene-positive plasmids isolated from a set of impetigo strains implicated in outbreaks of pemphigus neonatorum in Czech maternity hospitals. Plasmids from the strains of clonal complex CC121 were related to archetypal plasmid pETBTY4. Sharing a 33-kb core sequence including virulence genes for ETB, EDIN C, and lantibiotics, they were assigned to a stand-alone lineage, named pETBTY4-based plasmids. Differing from each other in the content of variable DNA regions, they formed four sequence types. In addition to them, a novel unique plasmid pETB608 isolated from a strain of ST130 was described. Carrying conjugative cluster genes, as well as new variants of etb and edinA genes, pETB608 could be regarded as a source of a new lineage of ETB plasmids. We have designed a helpful detection assay, which facilitates the precise identification of the all described types of ETB plasmids.


Assuntos
Dermotoxinas/genética , Exfoliatinas/genética , Impetigo/microbiologia , Plasmídeos/genética , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Bacteriocinas/genética , República Tcheca/epidemiologia , DNA Bacteriano/genética , Humanos , Impetigo/epidemiologia , Pênfigo/epidemiologia , Pênfigo/microbiologia , Filogenia , Plasmídeos/isolamento & purificação , Staphylococcus aureus/classificação , Virulência/genética , Sequenciamento Completo do Genoma
6.
Anal Biochem ; 507: 66-70, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27237372

RESUMO

Staphylococcus aureus plasmids are the main factor in the spreading of antibacterial resistance among bacterial strains that has emerged on a worldwide scale. Plasmids recovered from 12 clinical and food isolates of S. aureus were treated with 10 mM free lanthanide Nd(3+) ions (non-enzymatic cleavage agent) in Hepes buffer (pH 7.5) at 70 °C. Topological forms of plasmids-closed circular (ccc), open circular (oc), and linear (lin)-produced by cleavage at different times were separated using pulsed-field agarose gel electrophoresis. The method is proposed to detect and differentiate several plasmids in the same bacterial strain according to their size.


Assuntos
DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/metabolismo , Neodímio/farmacologia , Plasmídeos/metabolismo , Staphylococcus aureus/genética , DNA Bacteriano/genética , Íons/química , Íons/farmacologia , Neodímio/química , Plasmídeos/genética
7.
Int J Syst Evol Microbiol ; 66(12): 5181-5186, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27654339

RESUMO

A polyphasic taxonomic approach was applied to strains of the species Staphylococcus sciuri in order to clarify the taxonomic legitimacy of the delineation of S. sciuri into S. sciurisubsp.sciuri, S. sciurisubsp.carnaticus and S. sciurisubsp.rodentium. A group of 81 S. sciuri isolates obtained from human (n=62) and veterinary (n=17) clinical materials and foods (n=2) and ten reference and type strains obtained from the Czech Collection of Microorganisms were characterized by extensive biotyping using conventional tests and commercial identification kits (ID 32 Staph, STAPHYtest, Biolog Microbial ID System), matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry, automated ribotyping with EcoRI restriction enzyme, 16S-23S rRNA gene intergenic transcribed spacer PCR fingerprinting and repetitive sequence-based PCR fingerprinting with the (GTG)5 primer. Selected strains representing different ribotypes were further characterized using sequencing of the ß-subunit of RNA polymerase (rpoB) gene. Individual techniques revealed high heterogeneity within the analysed S. sciuri strains but differentiation of the investigated strains into groups corresponding to the aforementioned S. sciuri subspecies and supported by these techniques was not clearly revealed. Based on obtained results and data retrieved from literature we propose rejecting the separation of S. sciuri species into S. sciurisubsp.sciuri, S. sciurisubsp.carnaticus and S. sciurisubsp.rodentium and we suggest reclassification these subspecies as S. sciuri with the type strain W.E. Kloos SC 116T (=ATCC 29062T=BCRC 12927T=CCM 3473T=CCUG 15598T=CNCTC 5683T=DSM 20345T=JCM 2425T=NCTC 12103T).


Assuntos
Filogenia , Staphylococcus/classificação , Composição de Bases , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Ribotipagem , Análise de Sequência de DNA , Staphylococcus/genética
8.
Virus Genes ; 51(1): 122-31, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26135320

RESUMO

Exfoliative toxin A (ETA)-coding temperate bacteriophages are leading contributors to the toxic phenotype of impetigo strains of Staphylococcus aureus. Two distinct eta gene-positive bacteriophages isolated from S. aureus strains which recently caused massive outbreaks of pemphigus neonatorum in Czech maternity hospitals were characterized. The phages, designated ϕB166 and ϕB236, were able to transfer the eta gene into a prophageless S. aureus strain which afterwards converted into an ETA producer. Complete phage genome sequences were determined, and a comparative analysis of five designed genomic regions revealed major variances between them. They differed in the genome size, number of open reading frames, genome architecture, and virion protein patterns. Their high mutual sequence similarity was detected only in the terminal regions of the genome. When compared with the so far described eta phage genomes, noticeable differences were found. Thus, both phages represent two new lineages of as yet not characterized bacteriophages of the Siphoviridae family having impact on pathogenicity of impetigo strains of S. aureus.


Assuntos
Vírus de DNA/genética , DNA Viral/química , DNA Viral/genética , Genoma Viral , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/isolamento & purificação , Staphylococcus aureus/virologia , Análise por Conglomerados , Infecção Hospitalar/epidemiologia , República Tcheca/epidemiologia , Vírus de DNA/isolamento & purificação , Surtos de Doenças , Exfoliatinas/genética , Ordem dos Genes , Transferência Genética Horizontal , Maternidades , Humanos , Impetigo/epidemiologia , Impetigo/microbiologia , Recém-Nascido , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Polimorfismo de Fragmento de Restrição , Prófagos/classificação , Prófagos/genética , Prófagos/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/genética , Staphylococcus aureus/isolamento & purificação , Sintenia , Transdução Genética
9.
Int J Med Microbiol ; 304(5-6): 764-74, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24951306

RESUMO

The Staphylococcal Cassette Chromosome mec (SCCmec) confers methicillin resistance to Staphylococcus aureus. While SCCmec is generally regarded as a mobile genetic element, the precise mechanisms by which large SCCmec elements are exchanged between staphylococci have remained enigmatic. In the present studies, we observed that the clinical methicillin-resistant S. aureus (MRSA) isolate UMCG-M4 with the sequence type 398 contains four prophages belonging to the serological groups A, B and Fa. Previous studies have shown that certain serological group B bacteriophages of S. aureus are capable of generalized transduction. We therefore assessed the transducing capabilities of the phages from strain UMCG-M4. The results show that some of these phages can indeed transduce plasmid pT181 to the recipient S. aureus strain RN4220. Therefore, we also investigated the possible involvement of these transducing phages in the transmission of the large SCCmec type V (5C2&5) element of S. aureus UMCG-M4. While no transduction of the complete SCCmec element was observed, we were able to demonstrate that purified phage particles did contain large parts of the SCCmec element of the donor strain, including the methicillin resistance gene mecA. This shows that staphylococcal phages can encapsulate the resistance determinant mecA of a large SCCmec type V (5C2&5) element, which may lead to its transfer to other staphylococci.


Assuntos
Genes Bacterianos , Staphylococcus aureus Resistente à Meticilina/virologia , Prófagos/genética , Transdução Genética , Montagem de Vírus , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/genética , Plasmídeos , Prófagos/fisiologia , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/genética
10.
mBio ; 14(2): e0249022, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36779718

RESUMO

Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.


Assuntos
Prófagos , Infecções Estafilocócicas , Humanos , Prófagos/genética , Staphylococcus aureus/genética , Lisogenia , Infecções Estafilocócicas/microbiologia , Staphylococcus , Fagos de Staphylococcus/genética , Proteínas de Membrana/genética
11.
Microbiol Spectr ; : e0134223, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37712674

RESUMO

Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.

12.
Int J Med Microbiol ; 302(6): 237-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22664376

RESUMO

One hundred and twenty-seven exfoliative toxin-producing (ET-positive) strains of Staphylococcus aureus collected in 23 Czech and one Slovak maternity hospitals from 1998 to 2011 were genotypically characterized by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE) profiling, spa gene polymorphism analysis, and ETA-converting prophage carriage, which resulted in the identification of 21 genotypes grouped into 4 clonal complexes (CC). Ninety-one isolates carried the eta gene alone whilst 12 isolates harboured only the etb gene. Two new, to date not defined, spa types (t6644 and t6645) and 2 novel sequence types (ST2194 and ST2195) were identified in the set of strains under study. The predominant CC121 occurred in 13 Czech hospitals. CC15, CC9, and ST88 (CC88) exclusively included eta gene-positive strains while the strains belonging to ST121 harboured the eta and/or etb genes. This study highlights not only significant genomic diversity among impetigo strains and the distribution of major genotypes disseminated in the Czech and Slovak maternity hospitals, but also reveals their impact in epidermolytic infections.


Assuntos
Genes Bacterianos , Maternidades , Impetigo/microbiologia , Staphylococcus aureus/isolamento & purificação , Técnicas de Tipagem Bacteriana/métodos , Sequência de Bases , Portador Sadio/microbiologia , Tchecoslováquia , Eletroforese em Gel de Campo Pulsado , Equipamentos e Provisões Hospitalares/microbiologia , Genótipo , Humanos , Recém-Nascido , Tipagem de Sequências Multilocus , Fenótipo , Polimorfismo Genético , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/classificação , Staphylococcus aureus/genética
13.
Arch Microbiol ; 194(7): 607-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22331232

RESUMO

The aim of this study was to compare the plasmid contents of methicillin-resistant Staphylococcus aureus (MRSA) strains classified into different clonal clusters (CCs). The isolates were collected from 15 Czech hospitals in 2000-2008. Plasmid DNA was detected in 65 (89%) strains, and 33 of them harbored more than one plasmid type. Altogether 24 different types of plasmids were identified, ranging in size from 1.3 to 55 kb. Restriction endonuclease analysis, plasmid elimination, DNA hybridization, and sequencing were used for their further characterization. It has been found that the conjugative, erythromycin resistance and enterotoxin D encoding plasmids are harbored by strains from different CCs. On the other hand, chloramphenicol and tetracycline resistance plasmids, and most of the penicillinase and cryptic plasmids were only detected in certain CCs. Especially, the pUSA300-like plasmids were found exclusively in the USA300 clone strains. The high diversity in plasmid content detected in the study strains implies that plasmids play a major role in evolution of MRSA clonal lineages.


Assuntos
Variação Genética , Staphylococcus aureus Resistente à Meticilina/genética , Plasmídeos/genética , Células Clonais , Farmacorresistência Bacteriana/genética , Genótipo , Dados de Sequência Molecular , Penicilinase/genética
14.
Microbiol Spectr ; 10(3): e0012322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35435752

RESUMO

Kayviruses are polyvalent broad host range staphylococcal phages with a potential to combat staphylococcal infections. However, the implementation of rational phage therapy in medicine requires a thorough understanding of the interactions between bacteriophages and pathogens at omics level. To evaluate the effect of a phage used in therapy on its host bacterium, we performed differential transcriptomic analysis by RNA-Seq from bacteriophage K of genus Kayvirus infecting two Staphylococcus aureus strains, prophage-less strain SH1000 and quadruple lysogenic strain Newman. The temporal transcriptional profile of phage K was comparable in both strains except for a few loci encoding hypothetical proteins. Stranded sequencing revealed transcription of phage noncoding RNAs that may play a role in the regulation of phage and host gene expression. The transcriptional response of S. aureus to phage K infection resembles a general stress response with differential expression of genes involved in a DNA damage response. The host transcriptional changes involved upregulation of nucleotide, amino acid and energy synthesis and transporter genes and downregulation of host transcription factors. The interaction of phage K with variable genetic elements of the host showed slight upregulation of gene expression of prophage integrases and antirepressors. The virulence genes involved in adhesion and immune evasion were only marginally affected, making phage K suitable for therapy. IMPORTANCE Bacterium Staphylococcus aureus is a common human and veterinary pathogen that causes mild to life-threatening infections. As strains of S. aureus are becoming increasingly resistant to multiple antibiotics, the need to search for new therapeutics is urgent. A promising alternative to antibiotic treatment of staphylococcal infections is a phage therapy using lytic phages from the genus Kayvirus. Here, we present a comprehensive view on the phage-bacterium interactions on transcriptomic level that improves the knowledge of molecular mechanisms underlying the Kayvirus lytic action. The results will ensure safer usage of the phage therapeutics and may also serve as a basis for the development of new antibacterial strategies.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Prófagos/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/genética , Transcriptoma
15.
Pathogens ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35055999

RESUMO

Staphylococci from the Staphylococcus intermedius-Staphylococcus hyicus species group include numerous animal pathogens and are an important reservoir of virulence and antimicrobial resistance determinants. Due to their pathogenic potential, they are possible causative agents of zoonoses in humans; therefore, it is important to address the properties of these strains. Here we used a polyphasic taxonomic approach to characterize the coagulase-negative staphylococcal strain NRL/St 03/464T, isolated from the nostrils of a healthy laboratory rat during a microbiological screening of laboratory animals. The 16S rRNA sequence, MALDI-TOF mass spectrometry and positive urea hydrolysis and beta-glucuronidase tests clearly distinguished it from closely related Staphylococcus spp. All analyses have consistently shown that the closest relative is Staphylococcus chromogenes; however, values of digital DNA-DNA hybridization <35.3% and an average nucleotide identity <81.4% confirmed that the analyzed strain is a distinct Staphylococcus species. Whole-genome sequencing and expert annotation of the genome revealed the presence of novel variable genetic elements, including two plasmids named pSR9025A and pSR9025B, prophages, genomic islands and a composite transposon that may confer selective advantages to other bacteria and enhance their survival. Based on phenotypic, phylogenetic and genomic data obtained in this study, the strain NRL/St 03/464T (= CCM 9025T = LMG 31873T = DSM 111348T) represents a novel species with the suggested name Staphylococcus ratti sp. nov.

16.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980677

RESUMO

Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10-4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies.IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Fagos de Staphylococcus/genética , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/virologia , Transdução Genética , Humanos , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/efeitos dos fármacos , Virulência
17.
Proteomics ; 10(8): 1634-44, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20186749

RESUMO

Sequencing of at least 13 Staphylococcus aureus isolates has shown that genomic plasticity impacts significantly on the repertoire of virulence factors. However, genome sequencing does not reveal which genes are expressed by individual isolates. Here, we have therefore performed a comprehensive survey of the composition and variability of the S. aureus exoproteome. This involved multilocus sequence typing, virulence gene, and prophage profiling by multiplex PCR, and proteomic analyses of secreted proteins using 2-DE. Dissection of the exoproteomes of 25 clinical isolates revealed that only seven out of 63 identified secreted proteins were produced by all isolates, indicating a remarkably high exoproteome heterogeneity within one bacterial species. Most interesting, the observed variations were caused not only by genome plasticity, but also by an unprecedented variation in secretory protein production due to differences in transcriptional and post-transcriptional regulation. Our data imply that genomic studies on virulence gene conservation patterns need to be complemented by analyses of the extracellular protein pattern to assess the full virulence potential of bacterial pathogens like S. aureus. Importantly, the extensive variability of secreted virulence factors in S. aureus also suggests that development of protective vaccines against this pathogen requires a carefully selected combination of invariably produced antigens.


Assuntos
Proteínas de Bactérias/análise , Regulação Bacteriana da Expressão Gênica , Proteoma/análise , Staphylococcus aureus/química , Adolescente , Adulto , Idoso , Proteínas de Bactérias/genética , Pré-Escolar , Genômica , Humanos , Lactente , Pessoa de Meia-Idade , Proteoma/genética , Proteômica , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Fatores de Virulência/genética , Adulto Jovem
18.
Environ Microbiol ; 12(9): 2527-38, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20406289

RESUMO

Given the great biological importance and high diversity of temperate Staphylococcus aureus bacteriophages, a method is needed for the description of their genomic structure. Here we have updated a multiplex PCR strategy for the complex characterization of S. aureus phages of the family Siphoviridae. Based on the comparative genomic analysis of the available phage sequences, a multilocus PCR strategy for typing the major modules of the phage genome was designed. The genomic modules were classified on the basis of the genes for integrase (10 types), anti-repressor (five types), replication proteins polA, dnaC and dnaD (four types), dUTPase (four types), portal protein (eight types), tail appendices (four types) and endolysin (four types) corresponding to the integrase locus, lysogeny control region, and modules for DNA replication, transcription regulation, packaging, tail appendices and lysis respectively. The nine PCR assays designed for the above sequences were shown to be capable to identify the bacteriophage gene pool present both in the phage and bacterial genomes and their extensive mosaic structure. The established multiplex PCR-based multilocus diagnostic scheme is convenient for rapid and reliable phage and prophage classification and for the study of bacteriophage evolution.


Assuntos
Genoma Viral , Siphoviridae/genética , Staphylococcus aureus/virologia , Hibridização Genômica Comparativa , DNA Viral/genética , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase/métodos , Prófagos/classificação , Prófagos/genética , Siphoviridae/classificação , Staphylococcus aureus/genética , Proteínas Virais/genética
19.
Microorganisms ; 8(2)2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024111

RESUMO

Members of the genus Staphylococcus are widespread in nature and occupy a variety of niches, however, staphylococcal colonization of animals in the Antarctic environment has not been adequately studied. Here, we describe the first isolation and characterization of two Staphylococcus intermedius group (SIG) members, Staphylococcus delphini and Staphylococcus pseudintermedius, in Antarctic wildlife. Staphylococcus delphini were found exclusively in Adélie penguins. The report of S. pseudintermedius from Weddell seals confirmed its occurrence in all families of the suborder Caniformia. Partial RNA polymerase beta-subunit (rpoB) gene sequencing, repetitive PCR fingerprinting with the (GTG)5 primer, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry gave consistent identification results and proved to be suitable for identifying SIG members. Comparative genomics of S. delphini isolates revealed variable genomic elements, including new prophages, a novel phage-inducible chromosomal island, and numerous putative virulence factors. Surface and extracellular protein distribution were compared between genomes and showed strain-specific profiles. The pathogenic potential of S. delphini was enhanced by a novel type of exfoliative toxin, trypsin-like serine protease cluster, and enterotoxin C. Detailed analysis of phenotypic characteristics performed on six Antarctic isolates of S. delphini and eight reference strains from different animal sources enabled us to emend the species description of S. delphini.

20.
J Bacteriol ; 191(11): 3462-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329640

RESUMO

Temperate bacteriophages play an important role in the pathogenicity of Staphylococcus aureus, for instance, by mediating the horizontal gene transfer of virulence factors. Here we established a classification scheme for staphylococcal prophages of the major Siphoviridae family based on integrase gene polymorphism. Seventy-one published genome sequences of staphylococcal phages were clustered into distinct integrase groups which were related to the chromosomal integration site and to the encoded virulence gene content. Analysis of three marker modules (lysogeny, tail, and lysis) for phage functional units revealed that these phages exhibit different degrees of genome mosaicism. The prevalence of prophages in a representative S. aureus strain collection consisting of 386 isolates of diverse origin was determined. By linking the phage content to dominant S. aureus clonal complexes we could show that the distribution of bacteriophages varied remarkably between lineages, indicating restriction-based barriers. A comparison of colonizing and invasive S. aureus strain populations revealed that hlb-converting phages were significantly more frequent in colonizing strains.


Assuntos
Prófagos/classificação , Prófagos/genética , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus aureus/virologia , Genoma Bacteriano/genética , Genótipo , Integrases/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA