Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 504(4): 679-685, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213634

RESUMO

Wnt5a signalling plays pathological roles in synovial inflammation and bone destruction. In the present study, we designed four human Wnt5a-based DNA recombinants and detected their effects on immunogenicity and anti-rheumatism in a collagen-induced arthritis (CIA) model. Histomorphometry and micro-CT scanning showed that the phWnt5a-NL was superior to other recombinants because it resulted in decreased severity of arthritis, histopathological scores of synovial inflammation and bone erosion in CIA mice. In addition, ELISA and TRAP staining showed that the phWnt5a-NL-immunized CIA mice had reductions in the serum concentrations of the rheumatoid-associated cytokines IL-1ß and RANKL and in osteoclastogenesis. Furthermore, flow cytometry showed that the phWnt5a-NL treatment increased the percentage of Treg cells. Finally, western blotting analysis showed that the phWnt5a-NL-immunization interrupted ß-catenin and JNK expression in osteoclast precursors derived from the CIA mice. The results suggest that depleting the carboxy-terminus in hWnt5a-based DNA recombinants may be beneficial for the treatment of chronic inflammatory disorders involving bone resorption.


Assuntos
Artrite Experimental/imunologia , Imunização/métodos , Proteínas Recombinantes/imunologia , Proteína Wnt-5a/imunologia , Animais , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/patologia , Citocinas/sangue , Citocinas/imunologia , Humanos , Interleucina-1beta/sangue , Interleucina-1beta/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Osteoclastos/citologia , Osteoclastos/imunologia , Osteoclastos/metabolismo , Osteogênese/imunologia , Proteínas Recombinantes/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Microtomografia por Raio-X/métodos
2.
Exp Cell Res ; 350(2): 349-357, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007558

RESUMO

The contributions of aryl hydrocarbon receptor (Ahr) to the pathogenesis of rheumatoid arthritis (RA), particularly bone loss, have not been clearly explored. The imbalance between osteoblasts and osteoclasts is a major reason for bone loss. The dysfunction of osteoblasts, which are derived from mesenchymal stem cells (MSCs), induced bone erosion occurs earlier and is characterized as more insidious. Here, we showed that the nuclear expression and translocation of Ahr were both significantly increased in MSCs from collagen-induced arthritis (CIA) mice. The enhanced Ahr suppressed the mRNA levels of osteoblastic markers including Alkaline phosphatase (Alp) and Runt-related transcription factor 2 (Runx2) in the differentiation of MSCs to osteoblasts in CIA. The 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-mediated activation of Ahr dose-dependently suppressed the expression of osteoblastic markers. In addition, the expression of ß-catenin was reduced in CIA MSCs compared with control, and the TCDD-mediated activation of the Ahr significantly inhibited ß-catenin expression. The Wnt3a-induced the activation of Wnt/ß-catenin pathway partly rescued the osteogenesis decline induced by TCDD. Taken together, these results indicate that activated Ahr plays a negative role in CIA MSCs osteogenesis, possibly by suppressing the expression of ß-catenin.


Assuntos
Artrite Experimental/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Receptores de Hidrocarboneto Arílico/metabolismo , beta Catenina/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Artrite Experimental/patologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos DBA , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Via de Sinalização Wnt
3.
Toxicol Appl Pharmacol ; 280(3): 502-10, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25194622

RESUMO

Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice.


Assuntos
Artrite Experimental/metabolismo , Osso e Ossos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Osteoblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Compostos Azo/farmacologia , Western Blotting , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Linhagem Celular , Proliferação de Células/fisiologia , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos DBA , Osteoblastos/citologia , Dibenzodioxinas Policloradas/farmacologia , Pirazóis/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Organismos Livres de Patógenos Específicos , Estatísticas não Paramétricas
4.
Biomed Res Int ; 2015: 765490, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075259

RESUMO

Dickkopf-1 (DKK1), a secretory inhibitor of canonical Wnt signaling, plays a critical role in certain bone loss diseases. Studies have shown that serum levels of DKK1 are significantly higher in rheumatoid arthritis (RA) patients and are correlated with the severity of the disease, which indicates the possibility that bone erosion in RA may be inhibited by neutralizing the biological activity of DKK1. In this study, we selected a panel of twelve peptides using the software DNASTAR 7.1 and screened high affinity and immunogenicity epitopes in vitro and in vivo assays. Furthermore, we optimized four B cell epitopes to design a novel DKK1 multiepitope DNA vaccine and evaluated its bone protective effects in collagen-induced arthritis (CIA), a mouse model of RA. High level expression of the designed vaccine was measured in supernatant of COS7 cells. In addition, intramuscular immunization of BALB/c mice with this vaccine was also highly expressed and sufficient to induce the production of long-term IgG, which neutralized natural DKK1 in vivo. Importantly, this vaccine significantly attenuated bone erosion in CIA mice compared with positive control mice. These results provide evidence for the development of a DNA vaccine targeted against DKK1 to attenuate bone erosion.


Assuntos
Artrite Experimental/terapia , Reabsorção Óssea/terapia , Epitopos de Linfócito B , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vacinas de DNA/farmacologia , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Células COS , Chlorocebus aethiops , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA