Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Geophys J Int ; 229(3): 1628-1645, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35190731

RESUMO

The footprint of a mineral system is potentially detectable at a range of scales and lithospheric depths, reflecting the size and distribution of its components. Magnetotellurics is one of a few techniques that can provide multiscale data sets to image and understand mineral systems. We have used long-period data from the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) as a first-order reconnaissance survey to resolve large-scale lithospheric architecture for mapping areas of mineral potential in northern Australia. The 3-D resistivity model reveals a broad conductivity anomaly extending from the Tennant Creek district to the Murphy Province in the lower crust and upper mantle, representing a potential fertile source region for mineral systems. Results from a higher-resolution infill magnetotelluric survey reveal two prominent conductors in an otherwise resistive host whose combined responses result in the lithospheric-scale conductivity anomaly mapped in the AusLAMP model. Integration of the conductivity structure with deep seismic reflection data reveals a favourable crustal architecture linking the lower, fertile source regions with potential depositional sites in the upper crust. The enhanced conductivity likely resulted from the remnant (metallic) material deposited when fluids were present during the 'ancient' tectonic events. This observation strongly suggests that the deep-penetrating major faults potentially acted as pathways for transporting metalliferous fluids to the upper crust where they could form mineral deposits. This result and its integration with other geophysical and geochronological data sets suggest high prospectivity for major mineral deposits in the vicinity of these major faults, that is, Gulunguru Fault and Lamb Fault. In addition to these insights, interpretation of high-frequency magnetotelluric data acquired during the infill survey helps to characterize cover and assist with selecting targets for stratigraphic drilling which, in turn, can validate the models and improve our understanding of basement geology, cover sequences and mineral potential. This study demonstrates that integration of geophysical data from multiscale surveys is an effective approach to scale reduction during mineral exploration in covered terranes with limited geological knowledge.

2.
Proc Natl Acad Sci U S A ; 111(28): 10083-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958873

RESUMO

The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.


Assuntos
Archaea/fisiologia , Evolução Biológica , Fósseis , Erupções Vulcânicas
3.
Sci Rep ; 12(1): 8190, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581247

RESUMO

The clean energy transition will require a vast increase in metal supply, yet new mineral deposit discoveries are declining, due in part to challenges associated with exploring under sedimentary and volcanic cover. Recently, several case studies have demonstrated links between lithospheric electrical conductors imaged using magnetotelluric (MT) data and mineral deposits, notably Iron Oxide Copper Gold (IOCG). Adoption of MT methods for exploration is therefore growing but the general applicability and relationship with many other deposit types remains untested. Here, we compile a global inventory of MT resistivity models from Australia, North and South America, and China and undertake the first quantitative assessment of the spatial association between conductors and three mineral deposit types commonly formed in convergent margin settings. We find that deposits formed early in an orogenic cycle such as volcanic hosted massive sulfide (VHMS) and copper porphyry deposits show weak to moderate correlations with conductors in the upper mantle. In contrast, deposits formed later in an orogenic cycle, such as orogenic gold, show strong correlations with mid-crustal conductors. These variations in resistivity response likely reflect mineralogical differences in the metal source regions of these mineral systems and suggest a metamorphic-fluid source for orogenic gold is significant. Our results indicate the resistivity structure of mineralized convergent margins strongly reflects late-stage processes and can be preserved for hundreds of millions of years. Discerning use of MT is therefore a powerful tool for mineral exploration.

4.
Nat Commun ; 12(1): 7245, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903723

RESUMO

Seismic reflectors in the uppermost mantle, which can indicate past plate tectonic subduction, are exceedingly rare below Archaean cratons, and restricted to the Neoarchaean. Here we present reprocessed seismic reflection profiles from the northwest Archaean Yilgarn Craton and the Palaeoproterozoic Capricorn Orogen of western Australia that reveal the existence of a ~4 km thick south-dipping band of seismic reflectors that extends from the base of the Archaean crust to at least 60 km depth. We interpret these reflectors, which lie south of a ~50 km deep crustal root, as a relict suture zone within the lithosphere. We suggest that the mantle reflectors were created either by subduction of an oceanic plate along the northern edge of the Yilgarn Craton, which started in the Mesoarchaean and produced the rocks in northern Yilgarn greenstone belts that formed in a supra-subduction zone setting, or, alternatively, by underthrusting of continental crust deep into the lithosphere during the Palaeoproterozoic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA