RESUMO
BACKGROUND: Most safety and efficacy trials of the SARS-CoV-2 vaccines excluded patients with cancer, yet these patients are more likely than healthy individuals to contract SARS-CoV-2 and more likely to become seriously ill after infection. Our objective was to record short-term adverse reactions to the COVID-19 vaccine in patients with cancer, to compare the magnitude and duration of these reactions with those of patients without cancer, and to determine whether adverse reactions are related to active cancer therapy. PATIENTS AND METHODS: A prospective, single-institution observational study was performed at an NCI-designated Comprehensive Cancer Center. All study participants received 2 doses of the Pfizer BNT162b2 vaccine separated by approximately 3 weeks. A report of adverse reactions to dose 1 of the vaccine was completed upon return to the clinic for dose 2. Participants completed an identical survey either online or by telephone 2 weeks after the second vaccine dose. RESULTS: The cohort of 1,753 patients included 67.5% who had a history of cancer and 12.0% who were receiving active cancer treatment. Local pain at the injection site was the most frequently reported symptom for all respondents and did not distinguish patients with cancer from those without cancer after either dose 1 (39.3% vs 43.9%; P=.07) or dose 2 (42.5% vs 40.3%; P=.45). Among patients with cancer, those receiving active treatment were less likely to report pain at the injection site after dose 1 compared with those not receiving active treatment (30.0% vs 41.4%; P=.002). The onset and duration of adverse events was otherwise unrelated to active cancer treatment. CONCLUSIONS: When patients with cancer were compared with those without cancer, few differences in reported adverse events were noted. Active cancer treatment had little impact on adverse event profiles.
Assuntos
COVID-19 , Neoplasias , Vacina BNT162 , Vacinas contra COVID-19 , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos , RNA Mensageiro , SARS-CoV-2RESUMO
The stable, guest-free crystal form of the simple molecular cavitand, Me,H,SiMe2, is shown to be intrinsically porous, possessing discrete, zero-dimensional (0D) pores/microcavities of about 28 Å(3). The incollapsible 0D pores of Me,H,SiMe2 have been exploited for the enclathration and room temperature (and higher) confinement of a wide range of small gases. Over 20 isostructural x(gas/guest)@Me,H,SiMe2 (x ≤ 1) clathrates (guest = H2O, N2, Ar, CH4, Kr, Xe, C2H4, C2H6, CH3F, CO2, H2S, CH3Cl, CH3OCH3, CH3Br, CH3SH, CH3CH2Cl, CH2Cl2, CH3I, CH3OH, BrCH2Cl, CH3CH2OH, CH3CN, CH3NO2, I2), and a propyne clathrate (CH3CCH@Me,H,SiMe2·2CHCl3), have been prepared and characterized, and their single crystal structures determined. Gas enclathration is found to be highly selective for gases that can be accommodated by the predefined, though slightly flexible 0D pore. The structure determinations provide valuable insight, at subangstrom resolution, into the factors that govern inclusion selectivity, gas accommodation, and the kinetic stability of the clathrates, which has been probed by thermal gravimetric analysis. The activation (emptying) of several clathrates (guest = H2O, N2, CO2, Kr, CH3F) is shown to occur in a single-crystal-to-single-crystal (SC â SC) fashion, often requiring elevated temperatures. Akin to open pore materials, water vapor and CO2 gas are shown to be taken up by single crystals of empty Me,H,SiMe2 at room temperature, but sorption rates are slow, occurring over weeks to months. Thus, Me,H,SiMe2 exhibits very low, but measurable, gas permeability, despite there being no obvious dynamic mechanism to facilitate gas uptake. The unusually slow exchange kinetics has allowed the rates of gas (water vapor and CO2) sorption to be quantified by single crystal X-ray diffraction. The data are well fit to a simple three-dimensional diffusion model.
RESUMO
A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu(2+) or Cr(2+) cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu3(btc)2 are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu3(btc)2 itself.
RESUMO
Many cancers are associated with poor diet, lack of physical activity, and excess weight. Improving any of these three lifestyle factors would likely reduce cancer deaths. However, modifications to each of these-better nutrition, enhanced activity and fitness, and loss of extra body fat-have different effect sizes on cancer mortality. This review will highlight the relative benefit that each lifestyle change, enacted prior to a diagnosis of cancer, might impart on cancer-related deaths, as well as attempt to quantify the changes required to derive such a benefit. The review relies primarily on epidemiological data, with meta-analyses serving as the backbone for comparisons across interventions and individual studies within the larger meta-analyses providing the data necessary to form more quantitative conclusions. The reader can then use this information to better understand, recommend, and implement behaviors that might ultimately reduce cancer mortality. Of all the interventions, it seems clear that exercise, specifically improving cardiorespiratory fitness, is the best way to decrease the risk of dying from cancer.
Assuntos
Aptidão Cardiorrespiratória , Neoplasias , Terapia Comportamental , Tecido Adiposo , Exercício Físico , Estado Nutricional , Neoplasias/prevenção & controleRESUMO
In this essay, the author reflects on his experience treating patients with cancer.