Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 464(7285): 54-8, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20164837

RESUMO

Local adaptations within species are often governed by several interacting genes scattered throughout the genome. Single-locus models of selection cannot explain the maintenance of such complex variation because recombination separates co-adapted alleles. Here we report a previously unrecognized type of intraspecific multi-locus genetic variation that has been maintained over a vast period. The galactose (GAL) utilization gene network of Saccharomyces kudriavzevii, a relative of brewer's yeast, exists in two distinct states: a functional gene network in Portuguese strains and, in Japanese strains, a non-functional gene network of allelic pseudogenes. Genome sequencing of all available S. kudriavzevii strains revealed that none of the functional GAL genes were acquired from other species. Rather, these polymorphisms have been maintained for nearly the entire history of the species, despite more recent gene flow genome-wide. Experimental evidence suggests that inactivation of the GAL3 and GAL80 regulatory genes facilitated the origin and long-term maintenance of the two gene network states. This striking example of a balanced unlinked gene network polymorphism introduces a remarkable type of intraspecific variation that may be widespread.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes/genética , Genes Fúngicos/genética , Polimorfismo Genético/genética , Saccharomyces/genética , Alelos , Galactose/metabolismo , Genoma Fúngico , Japão , Dados de Sequência Molecular , Filogenia , Portugal , Pseudogenes/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces/classificação , Saccharomyces/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 108(35): 14539-44, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21873232

RESUMO

Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement.


Assuntos
Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Classificação , Ecologia , Dados de Sequência Molecular , Saccharomyces cerevisiae/classificação
4.
Mol Cell ; 20(4): 589-99, 2005 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-16307922

RESUMO

To date, several classes of enzymes have been shown to affect transcription by catalyzing the modifications of nucleosomes via methylation. Employing our global proteomic screen, GPS, we have determined that the loss of Bur2, a component of the Bur1/Bur2 cyclin-dependent protein kinase, results in a decrease in histone H3(K4) methylation catalyzed by COMPASS. Furthermore, Bur1/Bur2 is required for histone H2B monoubiquitination by Rad6/Bre1. The effect on histone monoubiquitination and methylation is the result of defective Bur1/Bur2-mediated phosphorylation of Rad6 on its serine residue 120 and proper recruitment of the Paf1 complex to chromatin. We have also demonstrated that serine 120 of Rad6 is required for histone H2B monoubiquitination and the regulation of gene expression in vivo. Our results identify in vivo substrates for Bur1/Bur2, thus linking its role to transcriptional elongation and demonstrating a potential activation mechanism for histone H2B monoubiquitination by the Rad6/Bre1 complex.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Ciclinas/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Complexos Multiproteicos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Enzimas de Conjugação de Ubiquitina/fisiologia , Sequência de Aminoácidos , Histona Metiltransferases , Humanos , Metilação , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/fisiologia , Fosforilação , Proteínas Metiltransferases , Saccharomyces cerevisiae/metabolismo , Serina/fisiologia , Ubiquitina/metabolismo
5.
J Biol Chem ; 278(37): 34739-42, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-12876294

RESUMO

Monoubiquitination of histone H2B, catalyzed by Rad6-Bre1, is required for methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively. The Paf1 protein complex, which associates with RNA polymerase II, is known to be required for these histone H3 methylation events. During the early elongation stage of transcription, the Paf1 complex is required for association of COMPASS with RNA polymerase II, but the role the Paf1 complex plays at the promoter has not been clear. We present evidence that the Paf1 complex is required for monoubiquitination of histone H2B at promoters. Strains deleted for several components of the Paf1 complex are defective in monoubiquitination of histone H2B, which results in the loss of methylation of lysines 4 and 79 of histone H3. We also show that Paf1 complex is required for the interaction of Rad6 and COMPASS with RNA polymerase II. Finally, we show that the Paf1 complex is required for Rad6-Bre1 catalytic activity but not for the recruitment of Rad6-Bre1 to promoters. Thus, in addition to its role during the elongation phase of transcription, the Paf1 complex appears to activate the function but not the placement of the Rad6-Bre1 ubiquitin-protein ligase at the promoters of active genes.


Assuntos
Histonas/metabolismo , Ligases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , DNA Polimerase II/metabolismo , Histona-Lisina N-Metiltransferase , Lisina , Metilação , RNA Polimerase II/metabolismo , Enzimas de Conjugação de Ubiquitina
6.
J Biol Chem ; 277(13): 10753-5, 2002 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-11805083

RESUMO

The trithorax (Trx) family of proteins is required for maintaining a specific pattern of gene expression in some organisms. Recently we reported the isolation and characterization of COMPASS, a multiprotein complex that includes the Trx-related protein Set1 of the yeast Saccharomyces cerevisiae. Here we report that COMPASS catalyzes methylation of the fourth lysine of histone H3 in vitro. Set1 and several other components of COMPASS are also required for histone H3 methylation in vivo and for transcriptional silencing of a gene located near a chromosome telomere.


Assuntos
Inativação Gênica , Histona-Lisina N-Metiltransferase , Metiltransferases/metabolismo , Telômero , Cromossomos Fúngicos , Histona Metiltransferases , Lisina/metabolismo , Metilação , Metiltransferases/química , Proteínas Metiltransferases , Saccharomyces cerevisiae/enzimologia
7.
J Biol Chem ; 277(32): 28368-71, 2002 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-12070136

RESUMO

The DNA of eukaryotes is wrapped around nucleosomes and packaged into chromatin. Covalent modifications of the histone proteins that comprise the nucleosome alter chromatin structure and have major effects on gene expression. Methylation of lysine 4 of histone H3 by COMPASS is required for silencing of genes located near chromosome telomeres and within the rDNA (Krogan, N. J, Dover, J., Khorrami, S., Greenblatt, J. F., Schneider, J., Johnston, M., and Shilatifard, A. (2002) J. Biol. Chem. 277, 10753-10755; Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S. Y., Winston, F., and Allis, C. D. (2001) Genes. Dev. 15, 3286-3295). To learn about the mechanism of histone methylation, we surveyed the genome of the yeast Saccharomyces cerevisiae for genes necessary for this process. By analyzing approximately 4800 mutant strains, each deleted for a different non-essential gene, we discovered that the ubiquitin-conjugating enzyme Rad6 is required for methylation of lysine 4 of histone H3. Ubiquitination of histone H2B on lysine 123 is the signal for the methylation of histone H3, which leads to silencing of genes located near telomeres.


Assuntos
Histonas/metabolismo , Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae , Ubiquitina/metabolismo , DNA Ribossômico/metabolismo , Eletroforese em Gel de Poliacrilamida , Inativação Gênica , Lisina/metabolismo , Metilação , Modelos Biológicos , Mutação , Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina
8.
Mol Cell ; 11(1): 267-74, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12535539

RESUMO

Ubiquitination of histone H2B catalyzed by Rad6 is required for methylation of histone H3 by COMPASS. We identified Bre1 as the probable E3 for Rad6's role in transcription. Bre1 contains a C3HC4 (RING) finger and is present with Rad6 in a complex. The RING finger of Bre1 is required for ubiquitination of histone H2B, methylation of lysine 4 and 79 of H3 and for telomeric silencing. Chromatin immunoprecipitation experiments indicated that both Rad6 and Bre1 are recruited to a promoter. Bre1 is essential for this recruitment of Rad6 and is dedicated to the transcriptional pathway of Rad6. These results suggest that Bre1 is the likely E3 enzyme that directs Rad6 to modify chromatin and ultimately to affect gene expression.


Assuntos
Ligases/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Inativação Gênica , Histonas/metabolismo , Ligases/genética , Lisina/metabolismo , Metilação , Dados de Sequência Molecular , Fases de Leitura Aberta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Telômero/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina , Ubiquitina-Proteína Ligases
9.
Mol Cell ; 11(3): 721-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12667454

RESUMO

Methylation of histone proteins is one of their many modifications that affect chromatin structure and regulate gene expression. Methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively, is required for silencing of expression of genes located near chromosome telomeres in yeast. We report that the Paf1 protein complex, which is associated with the elongating RNA polymerase II, is required for methylation of lysines 4 and 79 of histone H3 and for silencing of expression of a telomere-associated gene. We show that the Paf1 complex is required for recruitment of the COMPASS methyltransferase to RNA polymerase II and that the subunits of these complexes interact physically and genetically. Collectively, our results suggest that the Paf1 complex is required for histone H3 methylation, therefore linking transcriptional elongation to chromatin methylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genoma Fúngico , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Western Blotting , Cromatina/metabolismo , Metilação de DNA , Eletroforese em Gel de Poliacrilamida , Inativação Gênica , Histona Metiltransferases , Lisina/química , Metilação , Metiltransferases/química , Modelos Genéticos , Mutação , Testes de Precipitina , Ligação Proteica , Proteínas Metiltransferases , Proteoma , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA