Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 119(1): 383-403, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625758

RESUMO

Hemp (Cannabis sativa L.) is an extraordinarily versatile crop, with applications ranging from medicinal compounds to seed oil and fibre products. Cannabis sativa is a short-day plant, and its flowering is highly controlled by photoperiod. However, substantial genetic variation exists for photoperiod sensitivity in C. sativa, and photoperiod-insensitive ("autoflower") cultivars are available. Using a bi-parental mapping population and bulked segregant analysis, we identified Autoflower2, a 0.5 Mbp locus significantly associated with photoperiod-insensitive flowering in hemp. Autoflower2 contains an ortholog of the central flowering time regulator FLOWERING LOCUS T (FT) from Arabidopsis thaliana which we termed CsFT1. We identified extensive sequence divergence between alleles of CsFT1 from photoperiod-sensitive and insensitive cultivars of C. sativa, including a duplication of CsFT1 and sequence differences, especially in introns. Furthermore, we observed higher expression of one of the CsFT1 copies found in the photoperiod-insensitive cultivar. Genotyping of several mapping populations and a diversity panel confirmed a correlation between CsFT1 alleles and photoperiod response, affirming that at least two independent loci involved in the photoperiodic control of flowering, Autoflower1 and Autoflower2, exist in the C. sativa gene pool. This study reveals the multiple independent origins of photoperiod insensitivity in C. sativa, supporting the likelihood of a complex domestication history in this species. By integrating the genetic relaxation of photoperiod sensitivity into novel C. sativa cultivars, expansion to higher latitudes will be permitted, thus allowing the full potential of this versatile crop to be reached.


Assuntos
Cannabis , Flores , Fotoperíodo , Proteínas de Plantas , Flores/genética , Flores/fisiologia , Cannabis/genética , Cannabis/fisiologia , Cannabis/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mapeamento Cromossômico
2.
Plant J ; 113(3): 437-445, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36458321

RESUMO

Hemp (Cannabis sativa) is a highly versatile crop with a multitude of applications, from textiles, biofuel and building material to high-value food products for consumer markets. Furthermore, non-hallucinogenic cannabinoids like cannabidiol (CBD), which can be extracted from female hemp flowers, are potentially valuable pharmacological compounds. In addition, hemp has high carbon sequestration potential associated with its rapid growth rate. Therefore, the hemp industry is gaining more traction and breeding hemp cultivars adapted to local climate conditions or bred for specific applications is becoming increasingly important. Here, we present a method for the rapid generation cycling (speed breeding) of hemp. The speed breeding protocol makes use of the photoperiod sensitivity of Cannabis. It encompasses vegetative growth of the plants for 2 weeks under continuous light, followed by 4 weeks under short-day conditions, during which flower induction, pollination and seed development proceed, and finally a seed ripening phase under continuous light and water stress. With the protocol described here, a generation time of under 9 weeks (61 days) from seed to seed can be achieved. Furthermore, our method synchronises the flowering time of different hemp cultivars, thus facilitating crosses between cultivars. The extremely short generation time will enable hemp researchers and breeders to perform crosses in a time-efficient way and generate new hemp cultivars with defined genetic characteristics over a short period of time.


Assuntos
Canabidiol , Canabinoides , Cannabis , Cannabis/genética , Melhoramento Vegetal , Flores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA