Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(15): 2717-2726, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37442126

RESUMO

Alzheimer's disease (AD) is one of the world's most pressing health crises. AD is an incurable disease affecting more than 6.5 million Americans, predominantly the elderly, and in its later stages, leads to memory loss, dementia, and death. Amyloid ß (Aß) protein aggregates have been one of the pathological hallmarks of AD since its initial characterization. The early stages of Aß accumulation and aggregation involve the formation of oligomers, which are considered neurotoxic and play a key role in further aggregation into fibrils that eventually appear in the brain as amyloid plaques. We have recently shown by combining ion mobility mass spectrometry (IM-MS) and atomic force microscopy (AFM) that Aß42 rapidly forms dodecamers (12-mers) as the terminal oligomeric state, and these dodecamers seed the early formation of Aß42 protofibrils. The link between soluble oligomers and fibril formation is one of the essential aspects for understanding the root cause of the disease state and is critical to developing therapeutic interventions. Utilizing a joint pharmacophore space (JPS) method, potential drugs have been designed specifically for amyloid-related diseases. These small molecules were generated based on crucial chemical features necessary for target selectivity. In this paper, we utilize our combined IM-MS and AFM methods to investigate the impact of three second-generation JPS small-molecule inhibitors, AC0201, AC0202, and AC0203, on dodecamer as well as fibril formation in Aß42. Our results indicate that AC0201 works well as an inhibitor and remodeler of both dodecamers and fibril formation, AC0203 behaves less efficiently, and AC0202 is ineffective.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Idoso , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Amiloide/metabolismo , Fragmentos de Peptídeos/metabolismo
2.
Sci Rep ; 11(1): 22161, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772945

RESUMO

Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aß42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3ß signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.


Assuntos
Cromolina Sódica/farmacologia , Microglia/imunologia , Microglia/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Biomarcadores , Linhagem Celular , Biologia Computacional/métodos , Citocinas/metabolismo , Suscetibilidade a Doenças , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Microglia/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteoma , Transdução de Sinais/efeitos dos fármacos
3.
Sci Rep ; 11(1): 8054, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850164

RESUMO

Cromolyn is a known mast cell stabilizer and is approved for treatment of asthma and for other allergic indications. Cromolyn, in a new redesigned dry powder formulation, is being tested in a pivotal clinical trial in combination with low dose ibuprofen to treat early Alzheimer's Disease (AD) subjects. To better understand the mechanistic effect cromolyn has in slowing down or halting the neuroinflammatory response associated with AD progression, we tested the effect of cromolyn to dampen the inflammatory response in the human HMC3 microglia cell line. The direct effect of cromolyn on HMC3 microglia is on cytokines and chemokines production following their activation by the inflammatory cytokine TNF-α. Cromolyn and a new fluorinated analog dramatically reduced the secretion of a wide spectrum of inflammatory mediators, which included cytokines such as IL-1ß, IL-6, IL-8 and IFN-γ, and chemokines such as CXCL10, CCL2, CCL3 and CCL4. These results bolster our understanding of how our cromolyn platform modulates toxic microglia behavior as a dynamic future treatment option for neurodegenerative disorders.


Assuntos
Cromolina Sódica , Microglia , Doença de Alzheimer/metabolismo , Citocinas/metabolismo , Inflamação/metabolismo
4.
J Alzheimers Dis ; 82(4): 1373-1401, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34219718

RESUMO

Progressive neurodegenerative diseases represent some of the largest growing treatment challenges for public health in modern society. These diseases mainly progress due to aging and are driven by microglial surveillance and activation in response to changes occurring in the aging brain. The lack of efficacious treatment options for Alzheimer's disease (AD), as the focus of this review, and other neurodegenerative disorders has encouraged new approaches to address neuroinflammation for potential treatments. Here we will focus on the increasing evidence that dysbiosis of the gut microbiome is characterized by inflammation that may carry over to the central nervous system and into the brain. Neuroinflammation is the common thread associated with neurodegenerative diseases, but it is yet unknown at what point and how innate immune function turns pathogenic for an individual. This review will address extensive efforts to identify constituents of the gut microbiome and their neuroactive metabolites as a peripheral path to treatment. This approach is still in its infancy in substantive clinical trials and requires thorough human studies to elucidate the metabolic microbiome profile to design appropriate treatment strategies for early stages of neurodegenerative disease. We view that in order to address neurodegenerative mechanisms of the gut, microbiome and metabolite profiles must be determined to pre-screen AD subjects prior to the design of specific, chronic titrations of gut microbiota with low-dose antibiotics. This represents an exciting treatment strategy designed to balance inflammatory microglial involvement in disease progression with an individual's manifestation of AD as influenced by a coercive inflammatory gut.


Assuntos
Disbiose , Microbioma Gastrointestinal , Inflamação/patologia , Doenças Neurodegenerativas/patologia , Envelhecimento/fisiologia , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Humanos
5.
J Am Soc Mass Spectrom ; 30(1): 85-93, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29713966

RESUMO

Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid ß-protein, particularly the 42-residue alloform (Aß42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aß inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aß42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aß42, destabilizes preformed fibrils, and reverses Aß42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development. Graphical Abstract.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Desenho de Fármacos , Espectrometria de Mobilidade Iônica/métodos , Modelos Moleculares , Nitrilas/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Pirrolidinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Aprendizado de Máquina , Microscopia de Força Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA