Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 146(2): 377-389.e10, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31982451

RESUMO

BACKGROUND: The human eosinophil Charcot-Leyden crystal (CLC) protein is a member of the Galectin superfamily and is also known as galectin-10 (Gal-10). CLC/Gal-10 forms the distinctive hexagonal bipyramidal crystals that are considered hallmarks of eosinophil participation in allergic responses and related inflammatory reactions; however, the glycan-containing ligands of CLC/Gal-10, its cellular function(s), and its role(s) in allergic diseases are unknown. OBJECTIVE: We sought to determine the binding partners of CLC/Gal-10 and elucidate its role in eosinophil biology. METHODS: Intracellular binding partners were determined by ligand blotting with CLC/Gal-10, followed by coimmunoprecipitation and coaffinity purifications. The role of CLC/Gal-10 in eosinophil function was determined by using enzyme activity assays, confocal microscopy, and short hairpin RNA knockout of CLC/Gal-10 expression in human CD34+ cord blood hematopoietic progenitors differentiated to eosinophils. RESULTS: CLC/Gal-10 interacts with both human eosinophil granule cationic ribonucleases (RNases), namely, eosinophil-derived neurotoxin (RNS2) and eosinophil cationic protein (RNS3), and with murine eosinophil-associated RNases. The interaction is independent of glycosylation and is not inhibitory toward endoRNase activity. Activation of eosinophils with INF-γ induces the rapid colocalization of CLC/Gal-10 with eosinophil-derived neurotoxin/RNS2 and CD63. Short hairpin RNA knockdown of CLC/Gal-10 in human cord blood-derived CD34+ progenitor cells impairs eosinophil granulogenesis. CONCLUSIONS: CLC/Gal-10 functions as a carrier for the sequestration and vesicular transport of the potent eosinophil granule cationic RNases during both differentiation and degranulation, enabling their intracellular packaging and extracellular functions in allergic inflammation.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteína Catiônica de Eosinófilo/metabolismo , Neurotoxina Derivada de Eosinófilo/metabolismo , Eosinófilos/imunologia , Glicoproteínas/metabolismo , Granuloma/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Hipersensibilidade/metabolismo , Lisofosfolipase/metabolismo , Animais , Antígenos CD34/metabolismo , Células Cultivadas , Galectinas/metabolismo , Humanos , Camundongos , Ligação Proteica
3.
J Allergy Clin Immunol ; 119(4): 838-47, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17321580

RESUMO

BACKGROUND: Surfactant dysfunction is implicated in small airway closure in asthma. Increased activity of secretory phospholipase A(2) (sPLA(2)) in the airways is associated with asthma exacerbations. Phosphatidylcholine, the principal component of pulmonary surfactant that maintains small airway patency, is hydrolyzed by sPLA(2). The lysophosphatidylcholine product is the substrate for eosinophil lysophospholipases. OBJECTIVE: To determine whether surfactant phospholipid hydrolysis by the combined activities of sPLA(2)s and eosinophil lysophospholipases induces surfactant dysfunction. METHODS: The effect of these enzymes on surfactant function was determined by capillary surfactometry. Thin layer chromatography was used to correlate enzyme-induced changes in surfactant phospholipid composition and function. Phosphatidylcholine and its hydrolytic products were measured by using mass spectrometry. RESULTS: Eosinophils express a 25-kd lysophospholipase and group IIA sPLA(2). Phospholipase A(2) alone induced only a small decrease in surfactant function, and 25-kd lysophospholipase alone degraded lysophosphatidylcholine but had no effect on surfactant function. The combined actions of sPLA(2) and lysophospholipase produced dose-dependent and time-dependent losses of surfactant function, concomitant with hydrolysis of phosphatidylcholine and lysophosphatidylcholine. Lysates of AML14.3D10 eosinophils induced surfactant dysfunction, indicating these cells express all the necessary lipolytic activities. In contrast, lysates of blood eosinophils required exogenous phospholipase A(2) to induce maximal surfactant dysfunction. CONCLUSION: The combined activities of sPLA(2)s and eosinophil lysophospholipases are necessary to degrade surfactant phospholipids sufficiently to induce functional losses in surfactant activity as reported in asthma. CLINICAL IMPLICATIONS: The phospholipases and lysophospholipases expressed by eosinophils or other airway cells may represent novel therapeutic targets for blocking surfactant degradation, dysfunction, and peripheral airway closure in asthma.


Assuntos
Eosinófilos/enzimologia , Glicoproteínas/metabolismo , Lisofosfolipase/metabolismo , Fosfolipases A/metabolismo , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/antagonistas & inibidores , Surfactantes Pulmonares/metabolismo , Animais , Catálise , Linhagem Celular Tumoral , Células Cultivadas , Sinergismo Farmacológico , Ativação Enzimática/fisiologia , Eosinófilos/metabolismo , Glicoproteínas/fisiologia , Fosfolipases A2 do Grupo II , Humanos , Hidrólise , Lisofosfolipase/fisiologia , Camundongos , Fosfolipases A/fisiologia , Fosfolipídeos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA