Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 25: 277-99, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19575660

RESUMO

Plants have evolved many systems to sense their environment and to modify their growth and development accordingly. One example is vernalization, the process by which flowering is promoted as plants sense exposure to the cold temperatures of winter. A requirement for vernalization is an adaptive trait that helps prevent flowering before winter and permits flowering in the favorable conditions of spring. In Arabidopsis and cereals, vernalization results in the suppression of genes that repress flowering. We describe recent progress in understanding the molecular basis of this suppression. In Arabidopsis, vernalization involves the recruitment of chromatin-modifying complexes to a clade of flowering repressors that are silenced epigenetically via histone modifications. We also discuss the similarities and differences in vernalization between Arabidopsis and cereals.


Assuntos
Arabidopsis/fisiologia , Grão Comestível/fisiologia , Flores/fisiologia , Fenômenos Fisiológicos Vegetais , Estações do Ano
2.
Plant Physiol ; 151(3): 1688-97, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19755537

RESUMO

Many strains of Arabidopsis (Arabidopsis thaliana) require exposure to prolonged cold for rapid flowering, a process known as vernalization. Vernalization in Arabidopsis results in the suppression of FLOWERING LOCUS C (FLC), a repressor of flowering. In a screen for mutants that no longer require vernalization for rapid flowering, we identified a dominant allele of the Enhancer of Zeste E(z) ortholog CURLY LEAF (CLF), clf-59. CLF is a Polycomb Group gene, and the clf-59 mutant protein contains a proline-to-serine transition in a cysteine-rich region that precedes the SET domain. Mutant plants are early flowering and have reduced FLC expression, but, unlike clf loss-of-function mutants, clf-59 mutants do not display additional pleiotropic phenotypes. clf-59 mutants have elevated levels of trimethylation on lysine 27 of histone H3 (H3K27me3) at FLC. Thus, clf-59 appears to be a gain-of-function allele, and this allele represses FLC without some of the components required for vernalization-mediated repression. In the course of this work, we also identified a marked difference in H3K27me3 levels at FLC between plants that contain and those that lack the FRIGIDA (FRI) gene. Furthermore, FRI appears to affect CLF occupancy at FLC; thus, our work provides insight into the molecular role that FRI plays in delaying the onset of flowering.


Assuntos
Substituição de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metilação de DNA , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , RNA de Plantas/metabolismo , Alinhamento de Sequência
3.
Genetics ; 176(3): 1501-10, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17483414

RESUMO

It has been proposed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) together with TIMING OF CAB EXPRESSION 1 (TOC1) make up the central oscillator of the Arabidopsis thaliana circadian clock. These genes thus drive rhythmic outputs, including seasonal control of flowering and photomorphogenesis. To test various clock models and to disclose the genetic relationship between TOC1 and CCA1/LHY in floral induction and photomorphogenesis, we constructed the cca1 lhy toc1 triple mutant and cca1 toc1 and lhy toc1 double mutants and tested various rhythmic responses and circadian output regulation. Here we report that rhythmic activity was dramatically attenuated in cca1 lhy toc1. Interestingly, we also found that TOC1 regulates the floral transition in a CCA1/LHY-dependent manner while CCA1/LHY functions upstream of TOC1 in regulating a photomorphogenic process. This suggests to us that TOC1 and CCA1/LHY participate in these two processes through different strategies. Collectively, we have used genetics to provide direct experimental support of previous modeling efforts where CCA1/LHY, along with TOC1, drives the circadian oscillator and have shown that this clock is essential for correct output regulation.


Assuntos
Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Fatores de Transcrição/genética , Arabidopsis , Regulação da Expressão Gênica/fisiologia , Genes de Plantas , Modelos Biológicos , Mutação , Fenômenos Fisiológicos Vegetais , Estações do Ano
4.
Plant Physiol ; 144(1): 391-401, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17384164

RESUMO

Circadian clocks are required to coordinate metabolism and physiology with daily changes in the environment. Such clocks have several distinctive features, including a free-running rhythm of approximately 24 h and the ability to entrain to both light or temperature cycles (zeitgebers). We have previously characterized the EARLY FLOWERING4 (ELF4) locus of Arabidopsis (Arabidopsis thaliana) as being important for robust rhythms. Here, it is shown that ELF4 is necessary for at least two core clock functions: entrainment to an environmental cycle and rhythm sustainability under constant conditions. We show that elf4 demonstrates clock input defects in light responsiveness and in circadian gating. Rhythmicity in elf4 could be driven by an environmental cycle, but an increased sensitivity to light means the circadian system of elf4 plants does not entrain normally. Expression of putative core clock genes and outputs were characterized in various ELF4 backgrounds to establish the molecular network of action. ELF4 was found to be intimately associated with the CIRCADIAN CLOCK-ASSOCIATED1 (CCA1)/LONG ELONGATED HYPOCOTYL (LHY)-TIMING OF CAB EXPRESSION1 (TOC1) feedback loop because, under free run, ELF4 is required to regulate the expression of CCA1 and TOC1 and, further, elf4 is locked in the evening phase of this feedback loop. ELF4, therefore, can be considered a component of the central CCA1/LHY-TOC1 feedback loop in the plant circadian clock.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ritmo Circadiano/fisiologia , Adaptação Fisiológica/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Mutação , Fotoperíodo , Transdução de Sinais , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant J ; 41(3): 376-85, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659097

RESUMO

The HUA2 gene acts as a repressor of floral transition. Lesions in hua2 were identified through a study of natural variation and through two mutant screens. An allele of HUA2 from Landsberg erecta (Ler) contains a premature stop codon and acts as an enhancer of early flowering 4 (elf4) mutants. hua2 single mutants, in the absence of the elf4 lesion, flower earlier than wild type under short days. hua2 mutations partially suppress late flowering in FRIGIDA (FRI )-containing lines, autonomous pathway mutants, and a photoperiod pathway mutant. hua2 mutations suppress late flowering by reducing the expression of several MADS genes that act as floral repressors including FLOWERING LOCUS C (FLC ) and FLOWERING LOCUS M (FLM ).


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/genética , Genes Homeobox , Variação Genética , Genótipo , Mutação , Fenótipo , Fotoperíodo
6.
Genes Dev ; 18(22): 2774-84, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15520273

RESUMO

The winter-annual habit (which typically involves a requirement for exposure to the cold of winter to flower in the spring) in Arabidopsis thaliana is mainly due to the repression of flowering by relatively high levels of FLC expression. Exposure to prolonged cold attenuates FLC expression through a process known as vernalization and thus permits flowering to occur in the spring. Here we show that the elevated FLC expression characteristic of nonvernalized winter annuals requires two genes, EARLY FLOWERING 7 (ELF7) and EARLY FLOWERING 8 (ELF8), that are homologs of components of the PAF1 complex of Saccharomyces cerevisiae. Furthermore, ELF7 and ELF8 are also required for the expression of other genes in the FLC clade of flowering repressors such as MAF2 and FLM. FLC, FLM, and MAF2 are involved in multiple flowering pathways that account for the broad effects of elf7 and elf8 mutations on flowering behavior. ELF7 and ELF8 are required for the enhancement of histone 3 trimethylation at Lys 4 in FLC chromatin. This modification of FLC chromatin appears to be required to elevate FLC expression to levels that can delay flowering in plants that have not been vernalized. A model of the role of ELF7, ELF8, and other previously described genes in the modification of the chromatin of flowering repressors is presented.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/fisiologia , Proteínas de Domínio MADS/metabolismo , Metilação , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , Temperatura Baixa , Flores/genética , Flores/metabolismo , Inativação Gênica , Genes de Plantas/genética , Histonas/metabolismo , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Estações do Ano , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transdução de Sinais
7.
Nature ; 419(6902): 74-7, 2002 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12214234

RESUMO

Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock. Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition. Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component. In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ritmo Circadiano/fisiologia , Estruturas Vegetais/crescimento & desenvolvimento , Reprodução/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/fisiologia , Luz , Fotoperíodo , Estruturas Vegetais/genética , Estruturas Vegetais/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Cell ; 15(11): 2719-29, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14555691

RESUMO

Plants synchronize developmental and metabolic processes with the earth's 24-h rotation through the integration of circadian rhythms and responses to light. We characterize the time for coffee (tic) mutant that disrupts circadian gating, photoperiodism, and multiple circadian rhythms, with differential effects among rhythms. TIC is distinct in physiological functions and genetic map position from other rhythm mutants and their homologous loci. Detailed rhythm analysis shows that the chlorophyll a/b-binding protein gene expression rhythm requires TIC function in the mid to late subjective night, when human activity may require coffee, in contrast to the function of EARLY-FLOWERING3 (ELF3) in the late day to early night. tic mutants misexpress genes that are thought to be critical for circadian timing, consistent with our functional analysis. Thus, we identify TIC as a regulator of the clock gene circuit. In contrast to tic and elf3 single mutants, tic elf3 double mutants are completely arrhythmic. Even the robust circadian clock of plants cannot function with defects at two different phases.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ritmo Circadiano/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , Ritmo Circadiano/fisiologia , Escuridão , Flores/genética , Flores/crescimento & desenvolvimento , Flores/efeitos da radiação , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Tiques , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Plant Cell ; 16(10): 2601-13, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15377760

RESUMO

Flowering in Arabidopsis thaliana is controlled by multiple pathways, including the photoperiod pathway and the FLOWERING LOCUS C (FLC)-dependent pathway. Here, we report that a pair of related jumonji-class transcription factors, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play divergent roles in the regulation of Arabidopsis flowering. ELF6 acts as a repressor in the photoperiod pathway, whereas REF6, which has the highest similarity to ELF6, is an FLC repressor. Ectopic expression studies and expression pattern analyses show that ELF6 and REF6 have different cellular roles and are also regulated differentially despite their sequence similarities. Repression of FLC expression by REF6 accompanies histone modifications in FLC chromatin, indicating that the transcriptional regulatory activity of this class of proteins includes chromatin remodeling. This report demonstrates the in vivo functions of this class of proteins in higher eukaryotes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA