Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Stem Cells ; 31(10): 2172-82, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23766088

RESUMO

Bone is a dynamic tissue that is continuously remodeled through the action of formative osteoblasts and resorptive osteoclasts. Chemerin is a secreted protein that activates chemokine-like receptor 1 (CMKLR1), a G protein-coupled receptor expressed by various cell types including adipocytes, osteoblasts, mesenchymal stem cells (MSCs), and macrophages. Previously, we identified chemerin as a regulator of adipocyte and osteoblast differentiation of MSCs. Herein we examined the role of chemerin in Lin(-) Sca1(+) c-kit(+) CD34(+) hematopoietic stem cell (HSC) osteoclastogenesis. We found that HSCs expressed both chemerin and CMKLR1 mRNA and secreted chemerin protein into the extracellular media. Neutralization of chemerin with a blocking antibody beginning prior to inducing osteoclast differentiation resulted in a near complete loss of osteoclastogenesis as evidenced by reduced marker gene expression and matrix resorption. This effect was conserved in an independent model of RAW264.7 cell osteoclastogenesis. Reintroduction of chemerin by reversal of neutralization rescued osteoclast differentiation indicating that chemerin signaling is essential to permit HSC differentiation into osteoclasts but following blockade the cells maintained the potential to differentiate into osteoclasts. Mechanistically, neutralization of chemerin blunted the early receptor activator of nuclear factor-kappa B ligand induction of nuclear factor of activated T-cells 2 (NFAT2), Fos, Itgb3, and Src associated with preosteoclast formation. Consistent with a central role for NFAT2, induction or activation of NFAT2 by forced expression or stimulation of intracellular calcium release rescued the impairment of HSC osteoclastogenesis caused by chemerin neutralization. Taken together, these data support a novel autocrine/paracrine role for chemerin in regulating osteoclast differentiation of HSCs through modulating intracellular calcium and NFAT2 expression/activation.


Assuntos
Diferenciação Celular , Fatores Quimiotáticos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Animais , Anticorpos/farmacologia , Linhagem Celular , Quimiocinas , Fatores Quimiotáticos/antagonistas & inibidores , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Ligante RANK/fisiologia , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
2.
J Cell Sci ; 124(Pt 16): 2723-34, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807937

RESUMO

Cyp26b1, a retinoic acid (RA)-metabolising enzyme, is expressed in the developing limb bud, and Cyp26b1(-/-) mice present with severe limb defects. These malformations might be attributable to an RA-induced patterning defect; however, recent reports suggest that RA is dispensable for limb patterning. In this study, we examined the role of endogenous retinoid signalling in skeletogenesis using Cyp26b1(-/-) mice and transgenic mice in which Cyp26b1 is conditionally deleted under control of the Prrx1 promoter beginning at ~E9.5 (Prrx1Cre(+)/Cyp26b1(fl/fl)). We found that the limb phenotype in Prrx1Cre(+)/Cyp26b1(fl/fl) mice was less severe than that observed in Cyp26b1(-/-) animals and that a change in retinoid signalling contributed to the difference in phenotypes. We systematically examined the role of endogenous RA signalling in chondrogenesis and found that Cyp26b1(-/-) cells and limb mesenchymal cells treated with a CYP inhibitor, are maintained in a pre-chondrogenic state, exhibit reduced chondroblast differentiation and have modestly accelerated chondrocyte hypertrophy. Furthermore, Cyp26b1(-/-) mesenchyme exhibited an increase in expression of genes in a closely related tendogenic lineage, indicating that retinoid signals in the limb interfere with differentiation and maintain progenitor status. Together, these findings support an important function for RA in regulating the behaviour of mesenchymal progenitors, and their subsequent differentiation and maturation.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Extremidades/patologia , Células-Tronco Mesenquimais/metabolismo , Tretinoína/metabolismo , Animais , Padronização Corporal/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Condrogênese/genética , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Inibidores Enzimáticos/farmacologia , Extremidades/embriologia , Extremidades/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas/genética , Ácido Retinoico 4 Hidroxilase , Transdução de Sinais/genética , Transgenes/genética
3.
J Cell Sci ; 123(Pt 12): 2068-76, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20501701

RESUMO

In the developing axial skeleton, sequential sonic hedgehog (SHH) and bone morphogenetic protein (BMP) signals are required for specification of a chondrogenic fate in presomitic tissue. A similar paradigm is thought to operate in the limb, but the signals involved are unclear. To investigate the nature of these signals, we examined BMP action in mesenchymal populations derived from the early murine limb bud (approximately embryonic day 10.5). These populations exhibited a graded response to BMPs, in which early limb mesenchymal cells (from the distal hind limb) displayed an anti-chondrogenic response, whereas BMPs promoted chondrogenesis in more mature cell populations (from the proximal fore limb). Under these conditions, multiple Gata genes were induced by BMPs and the extent of induction correlated with BMP anti-chondrogenic activity. A screen of limb-bud-expressed ligands revealed that prior short-term exposure to transforming growth factor beta1 (TGFbeta1) ameliorated the anti-chondrogenic response to BMP. Furthermore, brief activation of the TGFbeta pathway was found to be necessary for subsequent induction of chondrogenesis by BMPs. Our findings indicate that, similar to axial skeletogenesis, induction of chondrogenesis in the appendicular skeleton is a two-step process. However, the programs differ in the transient signals driving chondrogenic responsiveness to BMPs, with SHH operating in the former and TGFbeta activation in the latter.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Condrogênese , Botões de Extremidades/metabolismo , Mesoderma/metabolismo , Camundongos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Cartilagem/embriologia , Cartilagem/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Botões de Extremidades/embriologia , Masculino , Mesoderma/embriologia , Camundongos/embriologia , Camundongos/genética
4.
Nat Rev Gastroenterol Hepatol ; 15(10): 625-636, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185916

RESUMO

The regulation of energy and glucose balance contributes to whole-body metabolic homeostasis, and such metabolic regulation is disrupted in obesity and diabetes. Metabolic homeostasis is orchestrated partly in response to nutrient and vagal-dependent gut-initiated functions. Specifically, the sensory and motor fibres of the vagus nerve transmit intestinal signals to the central nervous system and exert biological and physiological responses. In the past decade, the understanding of the regulation of vagal afferent signals and of the associated metabolic effect on whole-body energy and glucose balance has progressed. This Review highlights the contributions made to the understanding of the vagal afferent system and examines the integrative role of the vagal afferent in gastrointestinal regulation of appetite and glucose homeostasis. Investigating the integrative and metabolic role of vagal afferent signalling represents a potential strategy to discover novel therapeutic targets to restore energy and glucose balance in diabetes and obesity.


Assuntos
Homeostase , Nervo Vago/fisiologia , Animais , Metabolismo Energético/fisiologia , Trato Gastrointestinal/inervação , Trato Gastrointestinal/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Humanos
5.
PeerJ ; 6: e5494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225164

RESUMO

Chemerin is an adipocyte derived signalling molecule (adipokine) that serves as a ligand activator of Chemokine-like receptor 1(CMKLR1). Chemerin/CMKLR1 signalling is well established to regulate fundamental processes in metabolism and inflammation. The composition and function of gut microbiota has also been shown to impact the development of metabolic and inflammatory diseases such as obesity, diabetes and inflammatory bowel disease. In this study, we assessed the microbiome composition of fecal samples isolated from wildtype, chemerin, or CMKLR1 knockout mice using Illumina-based sequencing. Moreover, the knockout mice and respective wildtype mice used in this study were housed at different universities allowing us to compare facility-dependent effects on microbiome composition. While there was no difference in alpha diversity within samples when compared by either facility or genotype, we observed a dramatic difference in the presence and abundance of numerous taxa between facilities. There were minor differences in bacterial abundance between wildtype and chemerin knockout mice, but significantly more differences in taxa abundance between wildtype and CMKLR1 knockout mice. Specifically, CMKLR1 knockout mice exhibited decreased abundance of Akkermansia and Prevotella, which correlated with body weight in CMKLR1 knockout, but not wildtype mice. This is the first study to investigate a linkage between chemerin/CMKLR1 signaling and microbiome composition. The results of our study suggest that chemerin/CMKLR1 signaling influences metabolic processes through effects on the gut microbiome. Furthermore, the dramatic difference in microbiome composition between facilities might contribute to discrepancies in the metabolic phenotype of CMKLR1 knockout mice reported by independent groups. Considered altogether, these findings establish a foundation for future studies to investigate the relationship between chemerin signaling and the gut microbiome on the development and progression of metabolic and inflammatory disease.

6.
Nat Commun ; 9(1): 1118, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549253

RESUMO

High protein feeding improves glucose homeostasis in rodents and humans with diabetes, but the mechanisms that underlie this improvement remain elusive. Here we show that acute administration of casein hydrolysate directly into the upper small intestine increases glucose tolerance and inhibits glucose production in rats, independently of changes in plasma amino acids, insulin levels, and food intake. Inhibition of upper small intestinal peptide transporter 1 (PepT1), the primary oligopeptide transporter in the small intestine, reverses the preabsorptive ability of upper small intestinal casein infusion to increase glucose tolerance and suppress glucose production. The glucoregulatory role of PepT1 in the upper small intestine of healthy rats is further demonstrated by glucose homeostasis disruption following high protein feeding when PepT1 is inhibited. PepT1-mediated protein-sensing mechanisms also improve glucose homeostasis in models of early-onset insulin resistance and obesity. We demonstrate that preabsorptive upper small intestinal protein-sensing mechanisms mediated by PepT1 have beneficial effects on whole-body glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Dieta Rica em Proteínas , Glucose/metabolismo , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Transportador 1 de Peptídeos/metabolismo , Aminoácidos/sangue , Animais , Caseínas/administração & dosagem , Hiperglicemia/patologia , Insulina/sangue , Intestino Delgado/enzimologia , Masculino , Transportador 1 de Peptídeos/antagonistas & inibidores , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Cell Metab ; 27(3): 572-587.e6, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514066

RESUMO

Long-chain acyl-CoA synthetase (ACSL)-dependent upper small intestinal lipid metabolism activates pre-absorptive pathways to regulate metabolic homeostasis, but whether changes in the upper small intestinal microbiota alter specific fatty acid-dependent pathways to impact glucose homeostasis remains unknown. We here first find that upper small intestinal infusion of Intralipid, oleic acid, or linoleic acid pre-absorptively increases glucose tolerance and lowers glucose production in rodents. High-fat feeding impairs pre-absorptive fatty acid sensing and reduces upper small intestinal Lactobacillus gasseri levels and ACSL3 expression. Transplantation of healthy upper small intestinal microbiota to high-fat-fed rodents restores L. gasseri levels and fatty acid sensing via increased ACSL3 expression, while L. gasseri probiotic administration to non-transplanted high-fat-fed rodents is sufficient to restore upper small intestinal ACSL3 expression and fatty acid sensing. In summary, we unveil a glucoregulatory role of upper small intestinal L. gasseri that impacts an ACSL3-dependent glucoregulatory fatty acid-sensing pathway.


Assuntos
Coenzima A Ligases/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Glucose/metabolismo , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Lactobacillus gasseri/metabolismo , Animais , Dieta Hiperlipídica/métodos , Emulsões/metabolismo , Transplante de Microbiota Fecal/métodos , Homeostase , Ácido Linoleico/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Fosfolipídeos/metabolismo , Ratos Sprague-Dawley , Óleo de Soja/metabolismo
8.
Cell Metab ; 27(1): 101-117.e5, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29056513

RESUMO

The gut microbiota alters energy homeostasis. In parallel, metformin regulates upper small intestinal sodium glucose cotransporter-1 (SGLT1), but whether changes of the microbiota or SGLT1-dependent pathways in the upper small intestine mediate metformin action is unknown. Here we report that upper small intestinal glucose sensing triggers an SGLT1-dependent pathway to lower glucose production in rodents. High-fat diet (HFD) feeding reduces glucose sensing and SGLT1 expression in the upper small intestine. Upper small intestinal metformin treatment restores SGLT1 expression and glucose sensing while shifting the upper small intestinal microbiota partly by increasing the abundance of Lactobacillus. Transplantation of upper small intestinal microbiota from metformin-treated HFD rats to the upper small intestine of untreated HFD rats also increases the upper small intestinal abundance of Lactobacillus and glucose sensing via an upregulation of SGLT1 expression. Thus, we demonstrate that metformin alters upper small intestinal microbiota and impacts a glucose-SGLT1-sensing glucoregulatory pathway.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Metformina/farmacologia , Transportador 1 de Glucose-Sódio/metabolismo , Animais , Dieta Hiperlipídica , Comportamento Alimentar , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Análise de Componente Principal , Ratos
9.
J Clin Invest ; 127(1): 33-42, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045403

RESUMO

Obesity and diabetes are associated with increased chronic low-grade inflammation and elevated plasma glucose levels. Although inflammation in the fat and liver are established features of obesity-associated insulin resistance, the intestine is emerging as a new site for immunologic changes that affect whole-body metabolism. Specifically, microbial and dietary factors incurred by diet-induced obesity influence underlying innate and adaptive responses of the intestinal immune system. These responses affect the maintenance of the intestinal barrier, systemic inflammation, and glucose metabolism. In this Review we propose that an understanding of the changes to the intestinal immune system, and how these changes influence systemic immunity and glucose metabolism in a whole-body integrative and a neuronal-dependent network, will unveil novel intestinal pathologic and therapeutic targets for diabetes and obesity.


Assuntos
Imunidade Adaptativa , Diabetes Mellitus/imunologia , Imunidade Inata , Resistência à Insulina/imunologia , Intestinos/imunologia , Obesidade/imunologia , Animais , Diabetes Mellitus/patologia , Glucose/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Intestinos/patologia , Rede Nervosa/imunologia , Rede Nervosa/patologia , Obesidade/patologia
10.
Cell Rep ; 19(8): 1685-1697, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538185

RESUMO

Retinoic acid (RA) plays important roles in development, growth, and homeostasis through regulation of the nuclear receptors for RA (RARs). Herein, we identify Hypermethylated in Cancer 1 (Hic1) as an RA-inducible gene. HIC1 encodes a tumor suppressor, which is often silenced by promoter hypermethylation in cancer. Treatment of cells with an RAR agonist causes a rapid recruitment of an RAR/RXR complex consisting of TDG, the lysine acetyltransferase CBP, and TET 1/2 to the Hic1 promoter. Complex binding coincides with a transient accumulation of 5fC/5caC and concomitant upregulation of Hic1 expression, both of which are TDG dependent. Furthermore, conditional deletion of Tdg in vivo is associated with Hic1 silencing and DNA hypermethylation of the Hic1 promoter. These findings suggest that the catalytic and scaffolding activities of TDG are essential for RA-dependent gene expression and provide important insights into the mechanisms underlying targeting of TET-TDG complexes.


Assuntos
Desmetilação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Desmetilação do DNA/efeitos dos fármacos , Dioxigenases , Deleção de Genes , Inativação Gênica/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Tretinoína/farmacologia
11.
Mol Cell Endocrinol ; 436: 114-29, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27461525

RESUMO

Obesity is associated with white adipose tissue (WAT) remodelling characterized by changes in cellular composition, size, and adipokine secretion. Levels of the adipokine chemerin are positively associated with obesity; however, the biological function of chemerin in WAT is poorly understood. We identified factors involved in WAT remodelling, including matrix metalloproteinase (Mmp)3 and chemokines (Ccl2, 3, 5, 7), as novel targets of chemerin signalling in mature adipocytes. Inhibition of chemerin signalling increased MMP activity and the recruitment of macrophages towards adipocyte-conditioned media. These effects were mediated through increases in NFkB signalling, suggesting that chemerin exerts an anti-inflammatory influence. We also demonstrate that multiple chemerin isoforms are present in adipocyte-conditioned media and that adipocyte-secreted chemerin, but not synthetic chemerin, recapitulates the activity of endogenous chemerin. Considered altogether, this suggests that endogenously secreted chemerin plays an autocrine/paracrine role in WAT, identifying chemerin as a therapeutic target to modulate adipose remodelling.


Assuntos
Adipócitos/metabolismo , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional , Adipócitos/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Quimiocinas/química , Quimiocinas/genética , Meios de Cultivo Condicionados/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Espectrometria de Massas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Testes de Neutralização , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
Mol Cell Endocrinol ; 417: 36-51, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26363224

RESUMO

Chemerin is an adipose-derived hormone that regulates immunity and energy homesotasis. To date, all known chemerin functions have been attributed to activation of the G protein-coupled receptor chemokine-like receptor-1 (CMKLR1). Chemerin is also the only known ligand for a second receptor, G protein-coupled receptor-1 (GPR1), whose signaling and function remains unknown. This study investigated the in vitro signal transduction mechanisms of CMKLR1 and GPR1 using a panel of luciferase-reporters and pathway-specific inhibitors. Herein we report the novel finding that chemerin signals through a RhoA and rho-associated protein kinase (ROCK)-dependent pathway for activation of the transcriptional regulator serum-response factor (SRF). Despite similarities in RhoA/ROCK, Gαi/o, and MAPK signaling, we also demonstrate species-specific and receptor-dependent variations in GPR1 and CMKLR1 signaling and expression of the SRF target genes EGR1, FOS and VCL. Moreover, we demonstrate that signaling through p38, Gαi/o, RhoA, and ROCK is required for chemerin-mediated chemotaxis of L1.2 lymphocytes and AGS gastric adenocarcinoma cells. These results provide, to our knowledge, the first empirical evidence that GPR1 is a functional chemerin receptor and identify RhoA/SRF as a novel chemerin-signaling axis via both CMKLR1 and GPR1.


Assuntos
Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Especificidade da Espécie
13.
Physiol Rep ; 3(8)2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26265756

RESUMO

Inflammatory bowel disease (IBD) is a family of disorders including ulcerative colitis and Crohn's disease that are characterized by chronic and relapsing intestinal inflammation. Increased production of proinflammatory mediators, possibly combined with low expression of anti-inflammatory mediators, is thought to promote the development and progression of IBD. In the current study, we demonstrate that expression, secretion, and processing of chemerin, a potent chemoattractant for cells expressing chemokine-like receptor 1 (CMKLR1), increased in the cecum and colon along a gradient positively associated with the severity of inflammation in dextran sodium sulfate (DSS)-induced colitis. We also show that levels of circulating bioactive chemerin increased following DSS treatment. At both 6-8 and 14-16 weeks of age, CMKLR1 knockout mice developed signs of clinical illness more slowly than wild type and had changes in circulating cytokine levels, increased spleen weight, and increased local chemerin secretion following DSS treatment. However, knockout mice ultimately developed similar levels of clinical illness and local inflammation as wild type. Finally, contrary to previous reports, intraperitoneal injection of bioactive chemerin had no effect on the severity of DSS-induced colitis. This suggests that local chemerin levels have a greater impact than circulating levels in the pathogenesis of colitis. Considered altogether, bioactive chemerin represents a novel biomarker for IBD severity, although strategies to modulate endogenous chemerin signaling other than chronic CMKLR1 loss are necessary in order to exploit chemerin as a therapeutic target for the treatment of IBD.

14.
Eur J Hum Genet ; 23(12): 1640-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25758993

RESUMO

Brachydactyly type A1 is an autosomal dominant disorder primarily characterized by hypoplasia/aplasia of the middle phalanges of digits 2-5. Human and mouse genetic perturbations in the BMP-SMAD signaling pathway have been associated with many brachymesophalangies, including BDA1, as causative mutations in IHH and GDF5 have been previously identified. GDF5 interacts directly as the preferred ligand for the BMP type-1 receptor BMPR1B and is important for both chondrogenesis and digit formation. We report pathogenic variants in BMPR1B that are associated with complex BDA1. A c.975A>C (p.(Lys325Asn)) was identified in the first patient displaying absent middle phalanges and shortened distal phalanges of the toes in addition to the significant shortening of middle phalanges in digits 2, 3 and 5 of the hands. The second patient displayed a combination of brachydactyly and arachnodactyly. The sequencing of BMPR1B in this individual revealed a novel c.447-1G>A at a canonical acceptor splice site of exon 8, which is predicted to create a novel acceptor site, thus leading to a translational reading frameshift. Both mutations are most likely to act in a dominant-negative manner, similar to the effects observed in BMPR1B mutations that cause BDA2. These findings demonstrate that BMPR1B is another gene involved with the pathogenesis of BDA1 and illustrates the continuum of phenotypes between BDA1 and BDA2.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Braquidactilia/genética , Mutação de Sentido Incorreto , Animais , Sequência de Bases , Braquidactilia/diagnóstico , Células Cultivadas , Éxons , Feminino , Humanos , Lactente , Masculino , Camundongos , Dados de Sequência Molecular
15.
Methods Mol Biol ; 1130: 251-265, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24482179

RESUMO

High-density micromass cultures of embryonic mesenchymal cells have proved to be an invaluable model for studying the entire chondrogenic program, from precartilaginous condensations through to chondrocyte hypertrophy. This culture model also provides a powerful system in which to explore the function of various factors in the commitment and differentiation of mesenchymal cells to the chondrogenic lineage. In this regard, micromass cultures provide a consistent and robust model for investigating the effects of genetic manipulations on skeletal phenotypes and for delineating their molecular basis. In this methods chapter, the derivation and use of micromass cultures from murine limb buds are described, but these techniques are also applicable to other organisms and mesenchymal cell sources.


Assuntos
Técnicas de Cultura de Células , Condrogênese/fisiologia , Botões de Extremidades/metabolismo , Mesoderma/metabolismo , Animais , Feminino , Expressão Gênica , Histocitoquímica , Mesoderma/citologia , Camundongos , Gravidez , Transfecção
16.
J Endocrinol ; 222(2): 201-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24895415

RESUMO

Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murine Gpr1 mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) and Cmklr1, Gpr1 expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygous Gpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lacking Gpr1 exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects of Gpr1 deficiency on adiposity, energy balance, and glucose homeostasis in vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Fatores Quimiotáticos/metabolismo , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Quimiocinas , Dieta Hiperlipídica/efeitos adversos , Feminino , Homeostase/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores Acoplados a Proteínas G/deficiência
17.
Endocrinology ; 153(2): 672-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22186410

RESUMO

Adipose tissue secretes a variety of bioactive signaling molecules, termed adipokines, which regulate numerous biological functions including appetite, energy balance, glucose homeostasis, and inflammation. Chemerin is a novel adipokine that regulates adipocyte differentiation and metabolism by binding to and activating the G protein-coupled receptor, chemokine like receptor-1 (CMKLR1). In the present study, we investigated the impact of CMKLR1 deficiency on adipose development, glucose homeostasis, and inflammation in vivo. Herein we report that regardless of diet (low or high fat), CMKLR1(-/-) mice had lower food consumption, total body mass, and percent body fat compared with wild-type controls. CMKLR1(-/-) mice also exhibited decreased hepatic and white adipose tissue TNFα and IL-6 mRNA levels coincident with decreased hepatic dendritic cell infiltration, decreased adipose CD3+ T cells, and increased adipose natural killer cells. CMKLR1(-/-) mice were glucose intolerant compared with wild-type mice, and this was associated with decreased glucose stimulated insulin secretion as well as decreased skeletal muscle and white adipose tissue glucose uptake. Collectively these data provide compelling evidence that CMKLR1 influences adipose tissue development, inflammation, and glucose homeostasis and may contribute to the metabolic derangement characteristic of obesity and obesity-related diseases.


Assuntos
Adiposidade/fisiologia , Regulação da Expressão Gênica/fisiologia , Intolerância à Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Glicemia , Peso Corporal/genética , Citocinas/genética , Citocinas/metabolismo , Gorduras na Dieta , Ingestão de Alimentos/genética , Ácido Glucárico/metabolismo , Intolerância à Glucose/genética , Insulina/metabolismo , Resistência à Insulina , Leptina/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Receptores de Quimiocinas , Receptores Acoplados a Proteínas G/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA