Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chembiochem ; 18(16): 1639-1649, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28557180

RESUMO

Unbiased chemoproteomic profiling of small-molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G protein-coupled receptors (GPCRs). These receptors are hardly tractable by affinity pulldown from lysates. We report a capture compound (CC)-based strategy to target and identify GPCRs directly from living cells. We synthesized CCs with sertindole attached to the CC scaffold in different orientations to target the dopamine D2 receptor (DRD2) heterologously expressed in HEK 293 cells. The structure-activity relationship of sertindole for DRD2 binding was reflected in the activities of the sertindole CCs in radioligand displacement, cell-based assays, and capture compound mass spectrometry (CCMS). The activity pattern was rationalized by molecular modelling. The most-active CC showed activities very similar to that of unmodified sertindole. A concentration of DRD2 in living cells well below 100 fmol used as an experimental input was sufficient for unambiguous identification of captured DRD2 by mass spectrometry. Our new CCMS workflow broadens the arsenal of chemoproteomic technologies to close a critical gap for the comprehensive characterization of drug-protein interactions.


Assuntos
Antagonistas dos Receptores de Dopamina D2/química , Imidazóis/química , Indóis/química , Receptores de Dopamina D2/análise , Animais , Antagonistas dos Receptores de Dopamina D2/síntese química , Antagonistas dos Receptores de Dopamina D2/efeitos da radiação , Células HEK293 , Humanos , Imidazóis/síntese química , Imidazóis/efeitos da radiação , Indóis/síntese química , Indóis/efeitos da radiação , Ligantes , Simulação de Acoplamento Molecular , Ensaio Radioligante , Ratos , Receptores de Dopamina D2/efeitos da radiação , Espiperona/química , Relação Estrutura-Atividade , Suínos , Espectrometria de Massas em Tandem , Raios Ultravioleta
2.
Photochem Photobiol Sci ; 11(3): 497-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22222955

RESUMO

Caged non-ionic detergents, comprised of polar oligo(ethylene glycol) and non-polar alkyl chains joined by a photocleavable ortho-nitrobenzyl sulfonate linker have been synthesized and characterized. The light-triggered transformation of such chameleon surfactant from a charge-neutral into a charged form offers great potential to improve 2-D gel electrophoretic separation of complex protein mixtures.


Assuntos
Luz , Tensoativos/química , Eletroforese em Gel Bidimensional , Etilenoglicol/química , Íons/química , Estrutura Molecular , Fotólise , Solubilidade , Tensoativos/síntese química
3.
Proteomics ; 11(20): 4096-104, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21898820

RESUMO

Suberoylanilide hydroxamic acid (SAHA) is a potent histone deacetylase (HDAC) inhibitor. Inhibitors of HDACs are used in cancer therapy based on the role HDACs play in transcription by regulating chromatin compaction and non-histone proteins such as transcription factors. Profiling of HDAC expression is of interest in the functional proteomics analysis of cancer. Also, non-HDAC proteins may interact with HDAC inhibitor drugs and contribute to the drug mode of action. We here present a tool for the unbiased chemical proteomic profiling of proteins that specifically interact with SAHA. We designed and synthesized a trifunctional Capture Compound containing SAHA as selectivity and identified HDACs1, 2, 3 and 6, known and predicted HDAC interactors from human-derived HepG2 cell lysate, as well as a set of new potential non-HDAC targets of SAHA. One of these non-HDAC targets, isochorismatase domain-containing protein 2 (ISOC2) is putative hydrolase associated with the negative regulation of the tumor-suppressor p16(INK4a). We demonstrated the direct and dose-dependent interaction of SAHA to the purified recombinant ISOC2 protein. Using SAHA Capture Compound mass spectrometry, we thus identified potential new SAHA target proteins in an entirely unbiased chemical proteomics approach.


Assuntos
Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Proteômica/métodos , Células Cultivadas , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Vorinostat
4.
J Biomed Biotechnol ; 2011: 850589, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21941435

RESUMO

An increasingly popular and promising field in functional proteomics is the isolation of proteome subsets based on small molecule-protein interactions. One platform approach in this field are Capture Compounds that contain a small molecule of interest to bind target proteins, a photo-activatable reactivity function to covalently trap bound proteins, and a sorting function to isolate captured protein conjugates from complex biological samples for direct protein identification by liquid chromatography/mass spectrometry (nLC-MS/MS). In this study we used staurosporine as a selectivity group for analysis in HepG2 cells derived from human liver. In the present study, we combined the functional isolation of kinases with different separation workflows of automated split-free nanoflow liquid chromatography prior to mass spectrometric analysis. Two different CCMS setups, CCMS technology combined with 1D LC-MS and 2D LC-MS, were compared regarding the total number of kinase identifications. By extending the chromatographic separation of the tryptic digested captured proteins from 1D LC linear gradients to 2D LC we were able to identify 97 kinases. This result is similar to the 1D LC setup we previously reported but this time 4 times less input material was needed. This makes CCMS of kinases an even more powerful tool for the proteomic profiling of this important protein family.


Assuntos
Cromatografia Líquida/métodos , Fosfotransferases/isolamento & purificação , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Células Hep G2 , Humanos , Modelos Moleculares , Fragmentos de Peptídeos/química , Fosfotransferases/química , Fosfotransferases/classificação , Estaurosporina/química
5.
Mol Cell Proteomics ; 8(7): 1688-96, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19332416

RESUMO

There is increasing interest in the role of antibodies targeting specific membrane proteins in neurological and other diseases. The target(s) of these pathogenic antibodies is known in a few diseases, usually when candidate cell surface proteins have been tested. Approaches for identifying new antigens have mainly resulted in the identification of antibodies to intracellular proteins, which are often very useful as diagnostic markers for disease but unlikely to be directly involved in disease pathogenesis because they are not accessible to circulating antibodies. To identify cell surface antigens, we developed a "conformational membrane antigen isolation and identification" strategy. First, a cell line is identified that reacts with patient sera but not with control sera. Second, intact cells are exposed to sera to allow the binding of presumptive autoantibodies to their cell surface targets. After washing off non-bound serum components, the cells are lysed, and immune complexes are precipitated. Third, the bound surface antigen is identified by mass spectrometry. As a model system we used a muscle cell line, TE671, that endogenously expresses muscle-specific tyrosine receptor kinase (MuSK) and sera or plasmas from patients with a subtype of the autoimmune disease myasthenia gravis in which patients have autoantibodies against MuSK. MuSK was robustly detected as the only membrane protein in immunoprecipitates from all three patient samples tested and not from the three MuSK antibody-negative control samples processed in parallel. Of note, however, there were many intracellular proteins found in the immunoprecipitates from both patients and controls, suggesting that these were nonspecifically immunoprecipitated from cell extracts. The conformational membrane antigen isolation and identification technique should be of value for the detection of highly relevant antigenic targets in the growing number of suspected antibody-mediated autoimmune disorders. The approach would also be very suitable for the analysis of human or experimental antitumor responses.


Assuntos
Antígenos de Superfície/imunologia , Autoanticorpos , Imunoprecipitação/métodos , Proteínas de Membrana/imunologia , Sequência de Aminoácidos , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Miastenia Gravis/imunologia
6.
Mol Cell Proteomics ; 8(12): 2843-56, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19741253

RESUMO

The profiling of subproteomes from complex mixtures on the basis of small molecule interactions shared by members of protein families or small molecule interaction domains present in a subset of proteins is an increasingly important approach in functional proteomics. Capture Compound Mass Spectrometry (CCMS) is a novel technology to address this issue. CCs are trifunctional molecules that accomplish the reversible binding of target protein families to a selectivity group (small molecule), covalent capturing of the bound proteins by photoactivated cross-linking through a reactivity group, and pullout of the small molecule-protein complexes through a sorting function, e.g. biotin. Here we present the design, synthesis, and application of a new Capture Compound to target and identify cAMP-binding proteins in complex protein mixtures. Starting with modest amounts of total protein mixture (65-500 microg), we demonstrate that the cAMP-CCs can be used to isolate bona fide cAMP-binding proteins from lysates of Escherichia coli, mammalian HepG2 cells, and subcellular fractions of mammalian brain, respectively. The identified proteins captured by the cAMP-CCs range from soluble cAMP-binding proteins, such as the catabolite gene activator protein from E. coli and regulatory subunits of protein kinase A from mammalian systems, to cAMP-activated potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channels from neuronal membranes and specifically synaptosomal fractions from rat brain. The latter group of proteins has never been identified before in any small molecule protein interaction and mass spectrometry-based proteomics study. Given the modest amount of protein input required, we expect that CCMS using the cAMP-CCs provides a unique tool for profiling cAMP-binding proteins from proteome samples of limited abundance, such as tissue biopsies.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Espectrometria de Massas/métodos , Sódio/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Extratos Celulares , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Polarização de Fluorescência , Células Hep G2 , Humanos , Dados de Sequência Molecular , Ligação Proteica , Ratos , Coloração pela Prata , Frações Subcelulares/metabolismo , Sinaptossomos/metabolismo
7.
J Proteome Res ; 9(2): 806-17, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20028079

RESUMO

The central role of kinases in cell signaling has set them in the focus of biomedical research. In functional proteomics analyses, large- scale profiling of kinases has become feasible through the use of affinity pulldown beads that carry immobilized kinase inhibitors. As an alternative approach to solid phase beads, Capture Compound Mass Spectrometry (CCMS) enables the functional isolation of protein-classes on the basis of small molecule-protein interactions in solution. Capture Compounds are trifunctional probes: a selectivity function interacts with the native target proteins in equilibrium, upon irradiation a photoactivatable reactivity function forms an irreversible covalent bond to the target proteins, and a sorting function allows the captured proteins to be isolated from a complex protein mixture. We report the design and application of a novel, fully water-soluble Capture Compound that carries the broadband kinase inhibitor staurosporine as selectivity function. We used this Capture Compound to profile the kinome of the human liver-derived cell line HepG2 and identified one hundred kinases. HepG2 cells are a widely used model system for hepatocarcinoma, hepatitis, and for investigation of drug toxicity effects. CCMS experiments in membrane fractions of human placenta are given as example for the applicability to human tissue.


Assuntos
Hepatócitos/efeitos dos fármacos , Espectrometria de Massas/métodos , Fosfotransferases/metabolismo , Estaurosporina/farmacologia , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Modelos Moleculares , Estaurosporina/metabolismo
8.
FEBS J ; 274(14): 3532-3544, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17561960

RESUMO

The ATP-sensitive potassium (K(ATP)) channel couples glucose metabolism to insulin secretion in pancreatic beta-cells. It comprises regulatory sulfonylurea receptor 1 and pore-forming Kir6.2 subunits. Binding and/or hydrolysis of Mg-nucleotides at the nucleotide-binding domains of sulfonylurea receptor 1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. We report here the first purification and functional characterization of sulfonylurea receptor 1. We also compared the ATPase activity of sulfonylurea receptor 1 with that of the isolated nucleotide-binding domains (fused to maltose-binding protein to improve solubility). Electron microscopy showed that nucleotide-binding domains purified as ring-like complexes corresponding to approximately 8 momomers. The ATPase activities expressed as maximal turnover rate [in nmol P(i).s(-1).(nmol protein)(-1)] were 0.03, 0.03, 0.13 and 0.08 for sulfonylurea receptor 1, nucleotide-binding domain 1, nucleotide-binding domain 2 and a mixture of nucleotide-binding domain 1 and nucleotide-binding domain 2, respectively. Corresponding K(m) values (in mm) were 0.1, 0.6, 0.65 and 0.56, respectively. Thus sulfonylurea receptor 1 has a lower K(m) than either of the isolated nucleotide-binding domains, and a lower maximal turnover rate than nucleotide-binding domain 2. Similar results were found with GTP, but the K(m) values were lower. Mutation of the Walker A lysine in nucleotide-binding domain 1 (K719A) or nucleotide-binding domain 2 (K1385M) inhibited the ATPase activity of sulfonylurea receptor 1 by 60% and 80%, respectively. Beryllium fluoride (K(i) 16 microm), but not MgADP, inhibited the ATPase activity of sulfonylurea receptor 1. In contrast, both MgADP and beryllium fluoride inhibited the ATPase activity of the nucleotide-binding domains. These data demonstrate that the ATPase activity of sulfonylurea receptor 1 differs from that of the isolated nucleotide-binding domains, suggesting that the transmembrane domains may influence the activity of the protein.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Hidrólise , Cinética , Proteínas Ligantes de Maltose , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/isolamento & purificação , Nucleotídeos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Ligação Proteica , Ratos , Receptores de Droga , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Receptores de Sulfonilureias
9.
J Med Chem ; 59(10): 4664-75, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27074629

RESUMO

Structurally related inhibitors of a shared therapeutic target may differ regarding potential toxicity issues that are caused by different off-target bindings. We devised a differential competition capture compound mass spectrometry (dCCMS) strategy to effectively differentiate off-target profiles. Tolcapone and entacapone are potent inhibitors of catechol-O-methyl transferase (COMT) for the treatment of Parkinson's disease. Tolcapone is also known for its hepatotoxic side effects even though it is therapeutically more potent than entacapone. Here, we identified 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) as a possible toxicity-causing off-target of tolcapone, and this protein is not bound by the less toxic COMT inhibitor entacapone. Moreover, two novel compounds from a focused library synthesized in-house, N(2),N(2),N(3),N(3)-tetraethyl-6,7-dihydroxy-5-nitronaphthalene-2,3-dicarboxamide and 5-(3,4-dihydroxy-5-nitrobenzylidene)-3-ethylthiazolidine-2,4-dione, were utilized to gain insight into the structure-activity relationships in binding to COMT and the novel off-target HIBCH. These compounds, especially N(2),N(2),N(3),N(3)-tetraethyl-6,7-dihydroxy-5-nitronaphthalene-2,3-dicarboxamide, could serve as starting point for the development of improved and more specific COMT inhibitors.


Assuntos
Inibidores de Catecol O-Metiltransferase/farmacologia , Catecol O-Metiltransferase/metabolismo , Inibidores de Catecol O-Metiltransferase/síntese química , Inibidores de Catecol O-Metiltransferase/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
10.
Mol Oncol ; 10(8): 1232-44, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27324824

RESUMO

Histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) are not commonly used in clinical practice for treatment of B-cell lymphomas, although a subset of patients with refractory or relapsed B-cell lymphoma achieved partial or complete remissions. Therefore, the purpose of this study was to identify molecular features that predict the response of B-cell lymphomas to SAHA treatment. We designed an integrative approach combining drug efficacy testing with exome and captured target analysis (DETECT). In this study, we tested SAHA sensitivity in 26 B-cell lymphoma cell lines and determined SAHA-interacting proteins in SAHA resistant and sensitive cell lines employing a SAHA capture compound (CC) and mass spectrometry (CCMS). In addition, we performed exome mutation analysis. Candidate validation was done by expression analysis and knock-out experiments. An integrated network analysis revealed that the Src tyrosine kinase Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog (FGR) is associated with SAHA resistance. FGR was specifically captured by the SAHA-CC in resistant cells. In line with this observation, we found that FGR expression was significantly higher in SAHA resistant cell lines. As functional proof, CRISPR/Cas9 mediated FGR knock-out in resistant cells increased SAHA sensitivity. In silico analysis of B-cell lymphoma samples (n = 1200) showed a wide range of FGR expression indicating that FGR expression might help to stratify patients, which clinically benefit from SAHA therapy. In conclusion, our comprehensive analysis of SAHA-interacting proteins highlights FGR as a factor involved in SAHA resistance in B-cell lymphoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas/metabolismo , Quinases da Família src/metabolismo , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Espectrometria de Massas , Mutação/genética , Reprodutibilidade dos Testes , Vorinostat
11.
FEBS J ; 272(5): 1090-102, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15720384

RESUMO

Nociceptors are specialized nerve fibers that transmit noxious pain stimuli to the dorsal horn of the spinal cord. A subset of nociceptors, the nonpeptidergic C-fibers, is characterized by its reactivity for the plant isolectin B4 (IB4) from Griffonia simplicifolia. The molecular nature of the IB4-reactive glycoconjugate, although used as a neuroanatomical marker for more than a decade, has remained unknown. We here present data which strongly suggest that a splice variant of the extracellular matrix proteoglycan versican is the IB4-reactive glycoconjugate associated with these nociceptors. We isolated (by subcellular fractionation and IB4 affinity chromatography) a glycoconjugate from porcine spinal cord tissue that migrated in SDS/PAGE as a single distinct protein band at an apparent molecular mass of > 250 kDa. By using MALDI-TOF/TOF MS, we identified this glycoconjugate unambiguously as a V2-like variant of versican. Moreover, we demonstrate that the IB4-reactive glycoconjugate and the versican variant can be co-released from spinal cord membranes by hyaluronidase, and that the IB4-reactive glycoconjugate and the versican variant can be co-precipitated by an anti-versican immunoglobulin and perfectly co-migrate in SDS/PAGE. Our findings shed new light on the role of the extracellular matrix, which is thought to be involved in plastic changes underlying pain-related phenomena such as hyperalgesia and allodynia.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Medula Espinal/metabolismo , Sequência de Aminoácidos , Animais , Proteoglicanas de Sulfatos de Condroitina/química , Proteoglicanas de Sulfatos de Condroitina/isolamento & purificação , Cromatografia de Afinidade , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Hialuronoglucosaminidase/metabolismo , Lectinas Tipo C , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Proteoglicanas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Medula Espinal/química , Frações Subcelulares , Suínos , Versicanas
12.
J Comp Neurol ; 444(3): 245-59, 2002 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-11840478

RESUMO

The orcokinins are a highly conserved family of crustacean peptides that enhance hindgut contractions in the crayfish Orconectes limosus (Stangier et al. [1992] Peptides 13:859-864). By combining immunocytochemical and mass spectrometrical analysis of the stomatogastric nervous system (STNS) in the crayfish Cherax destructor, we show that multiple orcokinins are synthesized in single neurons. Immunocytochemistry demonstrated orcokinin-like immunoreactivity in all four ganglia of the STNS and in the pericardial organs, a major neurohaemal organ. Identified neurons in the STNS were stained, including a pair of modulatory interneurons (inferior ventricular nerve neuron, IVN), a neuron with its cell body in the stomatogastric ganglion that innervates cardiac muscle c6 via the anterior median nerves (AM-c6), and a sensory neuron (anterior gastric receptor neuron). Five orcokinin-related peptides were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) post source decay fragmentation in samples of either the stomatogastric ganglion or the pericardial organs. Four of these peptides are identical to peptides derived from the cloned Procambarus clarkii precursor (Yasuda-Kamatani and Yasuda [2000] Gen. Comp. Endocrinol. 118:161-172), including the original [Asn(13)]-orcokinin (NFDEIDRSGFGFN, [M+H](+) = 1,517.7 Da), [Val(13)]-orcokinin ([M+H](+) = 1,502.7 Da), [Thr(8)-His(13)]-orcokinin ([M+H](+) = 1,554.8 Da), and FDAFTTGFGHS ([M+H](+) = 1,186.5 Da). The fifth peptide is a hitherto unknown orcokinin variant: [Ala(8)-Ala(13)]-orcokinin ([M+H](+) = 1,458.7 Da). The masses of all five peptides were also detected in the inferior ventricular nerve of C. destructor, which contains the cell bodies and axons of the IVNs as well as the axons of two other orcokinin-like immunoreactive neurons. In the oesophageal nerve, in which all the orcokinin-like immunoreactivity derives from the IVNs, at least two of the orcokinins were detected, indicating that multiple orcokinins are synthesized in these neurons. Similarly, all four orcokinin masses were detected in the anterior median nerves, in which all the orcokinin-like immunoreactivity derives from the AM-c6 neuron. This study therefore lays the groundwork to investigate the function of the orcokinin peptide family using single identified neurons in a well-studied system.


Assuntos
Astacoidea/metabolismo , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Estômago/inervação , Animais , Feminino , Imuno-Histoquímica , Masculino , Pericárdio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Methods Mol Biol ; 795: 135-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21960220

RESUMO

The enormous diversity of kinases and their pivotal role in cell signaling have set kinases in the focus of biomedical research. Profiling the kinome of tissues of different origin is essential for biomarker discovery. In drug research, it is necessary to comprehend the specificity profile of a given kinase inhibitor. Capture Compound Mass Spectrometry (CCMS) (Koster et al., Assay Drug. Dev. Technol. 5:381-390, 2007) addresses the need for a tool to physically isolate and reliably profile the binders of kinase inhibitors directly in biological samples. Capture Compounds™ are trifunctional probes: a selectivity function consisting of the kinase inhibitor interacts reversibly with the native target proteins in equilibrium, a photoactivatable reactivity function forms an irreversible covalent bond to the target protein upon irradiation, and a sorting function allows the captured protein(s) to be isolated and identified by mass spectrometric analysis in an affinity-driven manner. Capture Compounds™ with any kinase inhibitor as selectivity function can be synthesized. We here used staurosporine as the selectivity function because it targets and, therefore, allows profiling a broad range of kinases (Romano and Giordano, Cell Cycle 7:3364-3668, 2008). Furthermore, we give an example of the application of the staurosporine Capture Compound to isolate kinases from human liver-derived HepG2 cells.


Assuntos
Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/metabolismo , Espectrometria de Massas , Fosfotransferases/metabolismo , Proteômica/métodos , Estaurosporina/metabolismo , Ligação Competitiva , Linhagem Celular Tumoral , Bases de Dados de Proteínas , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Peptídeos/análise , Fosfotransferases/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Estaurosporina/farmacologia , Tripsina/metabolismo
14.
Methods Mol Biol ; 803: 97-125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22065221

RESUMO

There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions. We describe a generic approach based on trifunctional Capture Compounds, in which the initial equilibrium-driven interaction between a small molecule probe and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function of the Capture Compound and the surface of the target protein(s). Subsequently, Capture Compound - protein conjugates are isolated from complex biological mixtures via the sorting function of the Capture Compound. Here, we describe the application of a trifunctional Capture Compound that carries the methyltransferase product inhibitor S-Adenosyl-L -homocysteine as the selectivity function for the isolation of methyltransferases from a complex lysate of Escherichia coli DH5α cells. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free S-Adenosyl-L -homocysteine.


Assuntos
Espectrometria de Massas/métodos , Metiltransferases/metabolismo , S-Adenosil-Homocisteína/metabolismo , Automação , Cromatografia Líquida , Bases de Dados de Proteínas , Eletroforese em Gel de Poliacrilamida , Escherichia coli/enzimologia , Nanotecnologia , Peptídeos/química , Peptídeos/isolamento & purificação , Ligação Proteica , Coloração pela Prata , Tripsina/metabolismo
15.
J Med Chem ; 55(8): 3934-44, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22494098

RESUMO

Recent studies have revealed that compounds believed to be highly selective frequently address multiple target proteins. We investigated the protein interaction profile of the widely prescribed thrombin inhibitor dabigatran (1), resulting in the identification and subsequent characterization of an additional target enzyme. Our findings are based on an unbiased functional proteomics approach called capture compound mass spectrometry (CCMS) and were confirmed by independent biological assays. 1 was shown to specifically bind ribosyldihydronicotinamide dehydrogenase (NQO2), a detoxification oxidoreductase. Molecular dockings predicted and biological experiments confirmed that dabigatran ethyl ester (2) inhibits NQO2 even more effectively than the parent 1 itself. Our data show that 1 and 2 are inhibitors of NQO2, thereby revealing a possible new aspect in the mode of action of 1. We present a workflow employing chemical proteomics, molecular modeling, and functional assays by which a compound's protein-interaction profile can be determined and used to tune the binding affinity.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Piridinas/farmacologia , Quinona Redutases/antagonistas & inibidores , beta-Alanina/análogos & derivados , Anticoagulantes/farmacologia , Benzimidazóis/química , Dabigatrana , Inibidores Enzimáticos/química , Células Hep G2 , Humanos , Células K562 , Espectrometria de Massas , Modelos Químicos , Ligação Proteica , Proteômica/métodos , Piridinas/química , Trombina/antagonistas & inibidores , beta-Alanina/química , beta-Alanina/farmacologia
16.
J Proteomics ; 75(1): 100-15, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21835278

RESUMO

The isolation of proteome subsets on the basis of the interactions of small molecules with proteins is an emerging paradigm in proteomics. Depending on the nature of the small molecule used as a bait, entire protein families can be monitored in biological samples, or new functions can be attributed to previously uncharacterized proteins. With pharmaceutical compounds as baits, drug targets and toxicity-relevant off-targets can be discovered in an unbiased proteomic screen. At the heart of this strategy are synthetic bi- or trifunctional small molecule probes. These probes carry the small molecules of interest as baits (selectivity function), as well as a sorting function for the isolation of small molecule-protein complexes or conjugates from complex protein mixtures. In some designs, a covalent linkage of the bound protein to the probe is established through a separate reactivity function or a combined selectivity/reactivity function. The covalent linkage allows for isolation or detection of probe-protein conjugates also under harsh or denaturing conditions. Ultimately, specifically isolated proteins are commonly identified by mass spectrometry. This review summarizes probe designs, workflows, and published applications of the three dominant approaches in the field, namely affinity pulldown, activity-based protein profiling, and Capture Compound Mass Spectrometry.


Assuntos
Proteínas/análise , Proteômica/métodos , Bibliotecas de Moléculas Pequenas/análise , Animais , Perfilação da Expressão Gênica/métodos , Humanos , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
17.
J Proteomics ; 75(1): 160-8, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21664307

RESUMO

Capture Compound Mass Spectrometry (CCMS) is a platform technology for the functional isolation of subproteomes. Here we report the synthesis of two new kinase Capture Compounds (CCs) based on the tyrosine-kinase specific inhibitors dasatinib and imatinib and compare their interaction profiles to that of our previously reported staurosporine-CCs. CCs are tri-functional molecules: they comprise a sorting function (e.g. the small molecule or drug of interest) which interacts with target proteins, a photo-activatable reactivity function to covalently trap the interacting proteins, and a sorting function to isolate the CC-protein conjugates from complex biological samples for protein identification by liquid chromatography/mass spectrometry (LC-MS/MS). We present data of CCMS experiments from human HepG2 cells and compare the profiles of the kinases isolated with dasatinib, imatinib and staurosporine CC, respectively. Dasatinib and imatinib have a more selective kinase binding profile than staurosporine. Moreover, the new CCs allow isolation and identification of additional kinases, complementing the staurosporine CC. The family of kinase CCs will be a valuable tool for the proteomic profiling of this important protein class. Besides sets of expected kinases we identified additional specific interactors; these off-targets may be of relevance in the view of the pharmacological profile of dasatinib and imatinib.


Assuntos
Perfilação da Expressão Gênica/métodos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteômica/métodos , Pirimidinas/farmacologia , Estaurosporina/farmacologia , Tiazóis/farmacologia , Benzamidas , Cromatografia Líquida/métodos , Dasatinibe , Células Hep G2 , Humanos , Mesilato de Imatinib , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Espectrometria de Massas/métodos , Piperazinas/química , Inibidores de Proteínas Quinases/química , Proteínas Quinases/genética , Pirimidinas/química , Estaurosporina/química , Tiazóis/química
18.
Arthritis Res Ther ; 12(1): R24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20152014

RESUMO

INTRODUCTION: Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes. METHODS: We searched for markers using the differential in-gel electrophoresis proteomic technology to compare proteins of bovine nucleus pulposus cells, phenotypically similar to mature human nucleus cells, with those of bovine articular chondrocytes. In the cohort of the differentially expressed proteins identified by mass spectrometry, cytokeratin 8 (CK8) was further validated by immunostaining of freshly isolated cells and frozen tissue sections using monoclonal antibodies. RESULTS: We identified a set of 14 differentially expressed proteins. Immunohistochemistry showed that only a subset of cells (approximately 10%) was positive for one of these proteins, CK8, an intermediate filament protein present in epithelial but not mesenchymal cells. In tissue sections, CK8-positive cells were seen in all discs examined and appeared as small isolated clusters surrounded by gelatinous matrix. Notochordal nucleus pulposus cells from pig, phenotypically similar to human infant nucleus pulposus cells, were all CK8-positive. The mesenchymal intermediate filament protein vimentin was present in all bovine and porcine nucleus pulposus cells. CONCLUSIONS: The notochordal cell population is reported to disappear from the nucleus pulposus of bovine discs before birth and from human discs in childhood. However our finding of the co-expression of vimentin and CK8 in small isolated clusters of the bovine nucleus pulposus cells indicates that a subpopulation of notochordal-like cells remains in the mature bovine disc. This finding agrees with reports in the literature on co-expression of cytokeratins and vimentin in adult human discs. As notochordal cells produce factors that promote matrix production, the CK8-positive subpopulation could have important implications for activity and survival of the nucleus pulposus, and should be considered in development of cell therapies for disc repair. In addition, the finding of differential expression of proteins in the cell population of nucleus pulposus has implications with regard to the search for specific markers.


Assuntos
Biomarcadores/análise , Condrócitos/metabolismo , Disco Intervertebral/citologia , Disco Intervertebral/metabolismo , Queratina-8/biossíntese , Animais , Bovinos , Eletroforese em Gel Bidimensional , Imunofluorescência , Imuno-Histoquímica , Espectrometria de Massas , Suínos
19.
Toxicol Sci ; 113(1): 243-53, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19783845

RESUMO

Capture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease. We aimed to understand the molecular basis of the difference of both drugs with respect to side effects. Using Capture Compounds with these drugs as selectivity functions, we were able to unambiguously and reproducibly isolate and identify their known target COMT. Tolcapone Capture Compounds captured five times more proteins than entacapone Capture Compounds. Moreover, tolcapone Capture Compounds isolated mitochondrial and peroxisomal proteins. The major tolcapone-protein interactions occurred with components of the respiratory chain and of the fatty acid beta-oxidation. Previously reported symptoms in tolcapone-treated rats suggested that tolcapone might act as decoupling reagent of the respiratory chain (Haasio et al., 2002b). Our results demonstrate that CCMS is an effective tool for the identification of a drug's potential off targets. It fills a gap in currently used in vitro screens for drug profiling that do not contain all the toxicologically relevant proteins. Thereby, CCMS has the potential to fill a technological need in drug safety assessment and helps reengineer or to reject drugs at an early preclinical stage.


Assuntos
Antiparkinsonianos/toxicidade , Benzofenonas/toxicidade , Inibidores de Catecol O-Metiltransferase , Catecóis/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Inibidores Enzimáticos/toxicidade , Fígado/efeitos dos fármacos , Espectrometria de Massas , Nitrilas/toxicidade , Nitrofenóis/toxicidade , Testes de Toxicidade/métodos , Animais , Antiparkinsonianos/química , Benzofenonas/química , Catecol O-Metiltransferase/metabolismo , Catecóis/química , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Desenho Assistido por Computador , Transporte de Elétrons , Inibidores Enzimáticos/química , Ácidos Graxos/metabolismo , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Estrutura Molecular , Nitrilas/química , Nitrofenóis/química , Oxirredução , Fosforilação Oxidativa , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Ratos , Reprodutibilidade dos Testes , Tolcapona
20.
J Vis Exp ; (46)2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21189471

RESUMO

There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography (1) or Activity Based Protein Profiling (2). Trifunctional Capture Compounds (CCs, Figure 1A) (3) are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-(L)-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" (4) or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-(L)-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature (5, 6). It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA (7), RNA (8), proteins (9), or small molecules (10). Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor (11). For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability (12), SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.


Assuntos
Espectrometria de Massas/métodos , Metiltransferases/análise , S-Adenosil-Homocisteína/análise , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Metiltransferases/metabolismo , Processos Fotoquímicos , Proteômica/métodos , S-Adenosil-Homocisteína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA