Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Can J Chem Eng ; 100(12): 3502-3516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36605789

RESUMO

The research on the potential of cavitation exploitation is currently an extremely interesting topic. To reduce the costs and time of the cavitation reactor optimization, nowadays, experimental optimization is supplemented and even replaced using computational fluid dynamics (CFD). One of the approaches towards sustainable water treatment is the use of the cavitation reactor with bluff elements mounted on its stator and rotor. The experimental results show that, besides the rotational speed, the spacing of the rotor pins has the most significant effect on the cavitation intensity and effectiveness, while the pin diameter and the surface roughness are less significant design parameters. The present paper uses a simplified CFD approach to investigate the conditions in the reactor and to select the optimal among a number of geometry variations.

2.
ASAIO J ; 64(5): 673-679, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076944

RESUMO

The need for mechanical assistance of the failing heart has increased with improvements in medicine and a rapidly aging population. In recent decades, significant progress has been made in the development and refinement of ventricular assist devices (VADs). Such devices operate in mixed laminar, transitional, and turbulent flow regime. One tool that assists in the development of VADs by facilitating understanding of the physical and mechanical properties of these flow regimes is computational fluid dynamics (CFD). In our investigation, we tested an advanced turbulence model that is a further development from standard Reynolds-averaged Navier-Stokes (RANS) models. From estimated pump flow rates (Q0) and constant rotation speed (n), pressure head (Δp) was calculated and validated with experimental data. An advanced turbulence model called scale adaptive simulation (SAS) was used in the solving of six different working cases comparing numerical SAS-SST and standard SST-kω models to experimental results.


Assuntos
Simulação por Computador , Desenho de Equipamento/métodos , Coração Auxiliar , Humanos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA