Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Environ Sci Technol ; 58(16): 7113-7123, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38547102

RESUMO

Low-pressure mercury lamps with high-purity quartz can emit both vacuum-UV (VUV, 185 nm) and UV (254 nm) and are commercially available and promising for eliminating recalcitrant organic pollutants. The feasibility of VUV/UV as a chemical-free oxidation process was verified and quantitatively assessed by the concept of H2O2 equivalence (EQH2O2), at which UV/H2O2 showed the same performance as VUV/UV for the degradation of trace organic contaminants (TOrCs). Although VUV showed superior H2O activation and oxidation performance, its performance highly varied as a function of light path length (Lp) in water, while that of UV/H2O2 proportionally decreased with decreasing H2O2 dose regardless of Lp. On increasing Lp from 1.0 to 3.0 cm, the EQH2O2 of VUV/UV decreased from 0.81 to 0.22 mM H2O2. Chloride and nitrate hardly influenced UV/H2O2, but they dramatically inhibited VUV/UV. The competitive absorbance of VUV by chloride and nitrate was verified as the main reason. The inhibitory effect was partially compensated by •OH formation from the propagation reactions of chloride or nitrate VUV photolysis, which was verified by kinetic modeling in Kintecus. In water with an Lp of 2.0 cm, the EQH2O2 of VUV/UV decreased from 0.43 to 0.17 mM (60.8% decrease) on increasing the chloride concentration from 0 to 15 mM and to 0.20 mM (53.5% decrease) at 4 mM nitrate. The results of this study provide a comprehensive understanding of VUV/UV oxidation in comparison to UV/H2O2, which underscores the suitability and efficiency of chemical-free oxidation with VUV/UV.


Assuntos
Peróxido de Hidrogênio , Compostos Orgânicos , Oxirredução , Raios Ultravioleta , Peróxido de Hidrogênio/química , Compostos Orgânicos/química , Fotólise , Poluentes Químicos da Água/química , Nitratos/química
2.
Environ Sci Technol ; 57(47): 18825-18833, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37099017

RESUMO

Aliphatic amines are abundant micropollutants in wastewater treatment plant effluents. In order to mitigate such micropollutants, ozonation is one of the most commonly employed advanced treatment processes. Current research regarding ozone efficiency is heavily focusing on reaction mechanisms of different contaminant groups, including structures with amine moieties as reactive sites. This study analyzes pH-dependent reaction kinetics and pathways of gabapentin (GBP), an aliphatic primary amine with an additional carboxylic acid group. The transformation pathway was elucidated applying a novel approach using isotopically labeled ozone (18O) and quantum chemistry calculations. While the direct reaction of GBP with ozone is highly pH-dependent and slow at pH 7 (13.7 M-1 s-1), the rate constant of the deprotonated species (1.76 × 105 M-1 s-1) is comparable to those of other amine compounds. Pathway analysis based on LC-MS/MS measurements revealed that ozonation of GBP leads to the formation of a carboxylic acid group and simultaneous nitrate formation, which was also observed in the case of the aliphatic amino acid glycine. Nitrate was formed with a yield of approximately 100%. Experiments with 18O-labeled ozone demonstrated that the intermediate aldehyde does most likely not include any oxygen originating from ozone. Furthermore, quantum chemistry calculations did not provide an explanation for the C-N scission during GBP ozonation without ozone involvement, although this reaction was slightly more favorable than for respective glycine and ethylamine reactions. Overall, this study contributes to a deeper understanding of reaction mechanisms of aliphatic primary amines during wastewater ozonation.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Aminas , Gabapentina , Nitratos , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cinética , Glicina , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 57(18): 7150-7161, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074125

RESUMO

Chlorine-based disinfection for drinking water treatment (DWT) was one of the 20th century's great public health achievements, as it substantially reduced the risk of acute microbial waterborne disease. However, today's chlorinated drinking water is not unambiguously safe; trace levels of regulated and unregulated disinfection byproducts (DBPs), and other known, unknown, and emerging contaminants (KUECs), present chronic risks that make them essential removal targets. Because conventional chemical-based DWT processes do little to remove DBPs or KUECs, alternative approaches are needed to minimize risks by removing DBP precursors and KUECs that are ubiquitous in water supplies. We present the "Minus Approach" as a toolbox of practices and technologies to mitigate KUECs and DBPs without compromising microbiological safety. The Minus Approach reduces problem-causing chemical addition treatment (i.e., the conventional "Plus Approach") by producing biologically stable water containing pathogens at levels having negligible human health risk and substantially lower concentrations of KUECs and DBPs. Aside from ozonation, the Minus Approach avoids primary chemical-based coagulants, disinfectants, and advanced oxidation processes. The Minus Approach focuses on bank filtration, biofiltration, adsorption, and membranes to biologically and physically remove DBP precursors, KUECs, and pathogens; consequently, water purveyors can use ultraviolet light at key locations in conjunction with smaller dosages of secondary chemical disinfectants to minimize microbial regrowth in distribution systems. We describe how the Minus Approach contrasts with the conventional Plus Approach, integrates with artificial intelligence, and can ultimately improve the sustainability performance of water treatment. Finally, we consider barriers to adoption of the Minus Approach.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Inteligência Artificial , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfecção , Halogenação
4.
Artigo em Alemão | MEDLINE | ID: mdl-34596701

RESUMO

BACKGROUND: The rise of an infectious disease crisis such as the SARS-CoV­2 pandemic posed significant challenges for the administrative structures of the public health service, which resulted in varying levels of efficiency in outbreak management as a function of staffing and digital resources. This substantially impeded the integration of innovative pandemic outbreak management tools. Innovative crisis management, such as cluster tracking, risk group testing, georeferencing, or the integration of wastewater surveillance recommended by the EU Commission, was made significantly more difficult. AIM: In this case study in Berchtesgadener Land, we present the integration of an area-wide georeferenced wastewater surveillance system that captured 95% of the entire population since November 2020. METHODOLOGY: Sampling occurred twice a week at nine municipal wastewater treatment plants and directly from the main sewer at three locations. Samples were pre-treated by centrifugation and subsequently analyzed by digital droplet polymerase chain reaction (PCR) targeting four specific genes of SARS-CoV­2. RESULTS: The integration of an area-wide georeferenced wastewater surveillance system was successful. Wastewater occurrences are plotted for each municipality against cumulative infections over seven days per 100,000 inhabitants. Changes in the infection pattern in individual communities are noticeable ten days ahead of the official case numbers with a sensitivity of approximately 20 in 100,000 inhabitants. DISCUSSION: The integration of this innovative approach to provide a comprehensive overview of the situation by employing a digital dashboard and the use of an early warning system via quantitative wastewater surveillance resulted in very efficient, proactive management, which might serve as a blueprint for other municipalities in Germany.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Alemanha/epidemiologia , Humanos , Saúde Pública , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Molecules ; 26(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671752

RESUMO

Micro- and nanoplastic particles are increasingly seen not only as contaminants themselves, but also as potential vectors for trace organic chemicals (TOrCs) that might sorb onto these particles. An analysis of the sorbed TOrCs can either be performed directly from the particle or TOrCs can be extracted from the particle with a solvent. Another possibility is to analyze the remaining concentration in the aqueous phase by a differential approach. In this review, the focus is on analytical methods that are suitable for identifying and quantifying sorbed TOrCs on micro- and nano-plastics. Specific gas chromatography (GC), liquid chromatography (LC) and ultraviolet-visible spectroscopy (UV-VIS) methods are considered. The respective advantages of each method are explained in detail. In addition, influencing factors for sorption in the first place are being discussed including particle size and shape (especially micro and nanoparticles) and the type of polymer, as well as methods for determining sorption kinetics. Since the particles are not present in the environment in a virgin state, the influence of aging on sorption is also considered.


Assuntos
Microplásticos/análise , Nanopartículas/análise , Plásticos/análise , Poluentes Químicos da Água/análise , Tamanho da Partícula
6.
Molecules ; 25(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126488

RESUMO

Micro-, submicro- and nanoplastic particles are increasingly regarded as vectors for trace organic chemicals. In order to determine adsorbed trace organic chemicals on polymers, it has usually been necessary to carry out complex extraction steps. With the help of a newly designed thermal desorption pyrolysis gas chromatography mass spectrometry (TD-Pyr-GC/MS) method, it is possible to identify adsorbed trace organic chemicals on micro-, submicro- and nanoparticles as well as the particle short chain polymers in one analytical setup without any transfers. This ensures a high sample throughput for the qualitative analysis of trace substances and polymer type. Since the measuring time per sample is only 2 h, a high sample throughput is possible. It is one of the few analytical methods which can be used also for the investigation of nanoplastic particles. Initially adsorbed substances are desorbed from the particle by thermal desorption (TD); subsequently, the polymer is fragmented by pyrolysis (PYR). Both particle treatment techniques are directly coupled with the same GC-MS system analyzing desorbed molecules and pyrolysis products, respectively. In this study, we developed a systematic and optimized method for this application. For method development, the trace organic chemicals phenanthrene, α-cypermethrin and triclosan were tested on reference polymers polystyrene (PS), polymethyl methacrylate (PMMA) and polyethylene (PE). Well-defined particle fractions were used, including polystyrene (sub)micro- (41 and 40 µm) and nanoparticles (78 nm) as well as 48-µm sized PE and PMMA particles, respectively. The sorption of phenanthrene (PMMA << PS 40 µm < 41 µm < PE < PS 78 nm) and α-cypermethrin (PS 41 µm < PS 40 µm < PE < PMMA < PS 78 nm) to the particles was strongly polymer-dependent. Triclosan adsorbed only on PE and on the nanoparticles of PS (PE < PS78).


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Plásticos/análise , Plásticos/química , Pirólise , Temperatura , Adsorção , Métodos Analíticos de Preparação de Amostras , Monitoramento Ambiental , Fatores de Tempo
7.
Environ Sci Technol ; 53(11): 6154-6161, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31046248

RESUMO

The discharge of wastewater effluents to a stream that is subsequently used for drinking water abstraction has been previously referred to as de facto water reuse. Where the abstraction of surface water for drinking water production occurs via induced bank filtration or aquifer recharge, additional site-specific factors should be considered to assess the impact of wastewater effluents on bank-filtered water. This study represents the first national reconnaissance to quantify wastewater effluent contributions in streams across Germany and consequences for indirect drinking water abstraction from these streams. An automated assessment using ArcGIS was conducted for river basins considering minimum and mean average discharge conditions of streams as well as discharge from more than 7500 wastewater facilities. In urban areas, where the natural base discharge is low, wastewater effluent contributions greater than 30-50% were determined under mean minimum discharge conditions, which commonly prevail from May to September. A conceptual model was proposed to estimate critical bank filtrate shares resulting in exceedances of monitoring trigger levels for health-relevant chemicals as a universal qualitative assessment regarding the relevance of de facto reuse conditions in surface waters used for drinking water abstraction. This approach was validated using chemical monitoring data for three case study locations.


Assuntos
Água Potável , Poluentes Químicos da Água , Alemanha , Rios , Águas Residuárias , Abastecimento de Água
8.
Anal Bioanal Chem ; 411(2): 339-351, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30421330

RESUMO

In this study, transformation products (TPs) of diclofenac, mefenamic acid, and sotalol derived from peroxidase- and laccase-catalyzed transformations were studied with different mass spectrometry (MS)-based workflows. A straightforward pre-screening of enzymatic degradation rate was performed using a robotic nano-ESI source coupled to single quadrupole MS. Accurate mass data and information on molecular hydrophobicity were obtained from a serial coupling of reversed phase liquid chromatography (RPLC) with hydrophilic interaction liquid chromatography (HILIC) to a time-of-flight-mass spectrometer (ToF-MS). These parameters were combined with fragmentation information from product ion scan operated in enhanced mode (EPI) with precursor selection in Q3 and data from multiple reaction monitoring (MRM) modes using a hybrid triple quadrupole-linear ion trap-mass spectrometer (QqQ/LIT-MS). "Suspect" MRM modes did not provide a significant sensitivity improvement compared to EPI experiments. The complementarity of the data from different MS-based workflows allowed for an increase of identification confidence. Overall, this study demonstrated that dimerization, hydroxylation, and dehydration reactions were the predominant mechanisms found for diclofenac and mefenamic acid during enzyme-catalyzed transformation, whereas a degradation product was observed for the peroxidase-catalyzed conversion of sotalol. Results can contribute to understand enzymatic mechanisms and provide a basis for assessing risks and benefits of enzyme-based remediation. Graphical abstract ᅟ.


Assuntos
Diclofenaco/química , Lacase/metabolismo , Espectrometria de Massas/métodos , Ácido Mefenâmico/química , Peroxidase/metabolismo , Sotalol/química , Antagonistas Adrenérgicos beta/química , Antagonistas Adrenérgicos beta/metabolismo , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Lacase/química , Estrutura Molecular , Peroxidase/química
10.
Environ Sci Technol ; 52(24): 14342-14351, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30419166

RESUMO

It is widely assumed that biodegradation of trace organic chemicals (TOrCs) in managed aquifer recharge (MAR) systems occurs via a cometabolic transformation with dissolved organic carbon serving as primary substrate. Hence, the composition facilitating bioavailability of the organic matter seems to have a great impact on TOrCs transformation in MAR systems. The aim of this study was to elucidate the character of effluent organic matter present in the feedwater of a simulated sequential MAR system throughout the infiltration by use of FT-ICR-MS analyses as well as spectroscopic methods. Furthermore, compositional changes were correlated with TOrCs targeted throughout the system as well as the abundance of different microbial phyla. On the basis of their behavior throughout the infiltration system in which different redox and substrate conditions prevailed, TOrCs were classified in four groups: easily degradable, redox insensitive, redox sensitive, and persistent. Masses correlating with persistent TOrCs were mainly comprised of CHNO-containing molecules but also of CHO which are known as carboxyl-rich alicyclic molecules, while CHOS and CHNOS can be neglected. Easily degradable TOrCs could be associated with CHNO-, CHO-, and CHOS-containing compounds. However, a shift of molecular compounds to mostly CHOS was observed for redox-insensitive TOrCs. Three hundred thirty eight masses correlated with removal of redox-sensitive TOrCs, but no distinct clustering was identified.


Assuntos
Água Subterrânea , Microbiota , Poluentes Químicos da Água , Purificação da Água , Biodegradação Ambiental , Compostos Orgânicos
11.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986721

RESUMO

It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g-1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE: NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1, are known to harbor nod genes. In this study, we report efficient molecular tools that can detect and quantify a wide diversity of nod genes in environmental samples. A surprisingly high diversity and abundance of nod genes were found in contaminated aquifers as well as wastewater treatment systems. This evidence indicates that NO dismutation may be a much more widespread physiology in natural and man-made environments than currently perceived. The molecular tools presented here will facilitate further studies on these enigmatic microbes in the future.


Assuntos
Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutase/genética , Águas Residuárias/química , Oxirredução , Purificação da Água
13.
Biochim Biophys Acta ; 1850(12): 2573-81, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26409144

RESUMO

BACKGROUND: The detailed analysis of Cytochrome P450 (CYP) catalyzed reactions is of great interest, since those are of importance for biotechnical applications, drug interaction studies and environmental research. Often cocktail approaches are carried out in order to monitor several CYP activities in a single experiment. Commonly in these approaches product formation is detected and IC50 values are determined. METHODS: In the present work, the reactions of two different CYP isoforms were monitored using real-time electrospray ionization mass spectrometry. Multiplex experiments using the highly specific CYP2A6 with its corresponding substrate coumarin as well as the highly promiscuous CYP3A4 with testosterone were conducted. Product formation and substrate depletion were simultaneously monitored and compared to the single CYP experiments. The diffusion-controlled rate of reaction and conversion rates that are used as parameters to assess the enzymatic activity were calculated for all measurements conducted. RESULTS: Differences in conversion rates and the theoretical rate of reaction that were observed for single CYP and multiplex experiments, respectively, reveal the complexity of the underlying mechanisms. Findings of this study imply that there might be distinct deviations between product formation and substrate degradation when mixtures are used. CONCLUSIONS: Detailed results indicate that for a comprehensive assessment of these enzymatic reactions both product and substrate should be considered. GENERAL SIGNIFICANCE: The direct hyphenation of enzymatic reactions to mass spectrometry allows for a comprehensive assessment of enzymatic behavior. Due to the benefits of this technique, the entire system which includes substrate, product and intermediates can be investigated. Thus, besides IC50 values further information regarding the enzymatic behavior offers the opportunity for a more detailed insight.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
Environ Microbiol ; 18(1): 87-99, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25727891

RESUMO

Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems.


Assuntos
Bacteroidetes/classificação , Reatores Biológicos/microbiologia , Clostridiales/classificação , Proteobactérias/classificação , Esgotos/microbiologia , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Ecossistema , Microbiota/genética , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento
15.
BMC Microbiol ; 16(1): 153, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27430211

RESUMO

BACKGROUND: Biogenic sulfuric acid (BSA) corrosion damages sewerage and wastewater treatment facilities but is not well investigated in sludge digesters. Sulfur/sulfide oxidizing bacteria (SOB) oxidize sulfur compounds to sulfuric acid, inducing BSA corrosion. To obtain more information on BSA corrosion in sludge digesters, microbial communities from six different, BSA-damaged, digesters were analyzed using culture dependent methods and subsequent polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). BSA production was determined in laboratory scale systems with mixed and pure cultures, and in-situ with concrete specimens from the digester headspace and sludge zones. RESULTS: The SOB Acidithiobacillus thiooxidans, Thiomonas intermedia, and Thiomonas perometabolis were cultivated and compared to PCR-DGGE results, revealing the presence of additional acidophilic and neutrophilic SOB. Sulfate concentrations of 10-87 mmol/L after 6-21 days of incubation (final pH 1.0-2.0) in mixed cultures, and up to 433 mmol/L after 42 days (final pH <1.0) in pure A. thiooxidans cultures showed huge sulfuric acid production potentials. Additionally, elevated sulfate concentrations in the corroded concrete of the digester headspace in contrast to the concrete of the sludge zone indicated biological sulfur/sulfide oxidation. CONCLUSIONS: The presence of SOB and confirmation of their sulfuric acid production under laboratory conditions reveal that these organisms might contribute to BSA corrosion within sludge digesters. Elevated sulfate concentrations on the corroded concrete wall in the digester headspace (compared to the sludge zone) further indicate biological sulfur/sulfide oxidation in-situ. For the first time, SOB presence and activity is directly relatable to BSA corrosion in sludge digesters.


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Betaproteobacteria/metabolismo , Esgotos/microbiologia , Enxofre/metabolismo , Ácidos Sulfúricos/metabolismo , Acidithiobacillus thiooxidans/genética , Acidithiobacillus thiooxidans/isolamento & purificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Biofilmes , Corrosão , Meios de Cultura , Eletroforese em Gel de Gradiente Desnaturante/métodos , Oxirredução , Filogenia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Compostos de Enxofre/metabolismo
16.
Microb Ecol ; 71(1): 78-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403720

RESUMO

To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Rios/microbiologia , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Sedimentos Geológicos/química , Filogenia , RNA Ribossômico 16S/genética , Rios/química , Águas Residuárias/química
17.
Environ Sci Technol ; 50(12): 6299-309, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27196630

RESUMO

The role of abundant and rare taxa in modulating the performance of wastewater-treatment systems is a critical component of making better predictions for enhanced functions such as micropollutant biotransformation. In this study, we compared 16S rRNA genes (rDNA) and rRNA gene expression of taxa in an activated-sludge-treatment plant (sequencing batch membrane bioreactor) at two solids retention times (SRTs): 20 and 5 days. These two SRTs were used to influence the rates of micropollutant biotransformation and nutrient removal. Our results show that rare taxa (<1%) have disproportionally high ratios of rRNA to rDNA, an indication of higher protein synthesis, compared to abundant taxa (≥1%) and suggests that rare taxa likely play an unrecognized role in bioreactor performance. There were also significant differences in community-wide rRNA expression signatures at 20-day SRT: anaerobic-oxic-anoxic periods were the primary driver of rRNA similarity. These results indicate differential expression of rRNA at high SRTs, which may further explain why high SRTs promote higher rates of micropollutant biotransformation. An analysis of micropollutant-associated degradation genes via metagenomics and direct measurements of a suite of micropollutants and nutrients further corroborates the loss of enhanced functions at 5-day SRT operation. This work advances our knowledge of the underlying ecosystem properties and dynamics of abundant and rare organisms associated with enhanced functions in engineered systems.


Assuntos
RNA Ribossômico 16S , Esgotos , Reatores Biológicos , Genes de RNAr , Águas Residuárias
18.
J Environ Manage ; 179: 66-75, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27179341

RESUMO

In recent years, there has been a significant increase in the development and application of technical decentralized filter systems for the treatment of runoff from traffic areas. However, there are still many uncertainties regarding the service life and the performance of filter materials that are employed in decentralized treatment systems. These filter media are designed to prevent the transport of pollutants into the environment. A novel pilot-scale test method was developed to determine - within a few days - the service lives and long-term removal efficiencies for dissolved heavy metals in stormwater treatment systems. The proposed method consists of several steps including preloading the filter media in a pilot-scale model with copper and zinc by a load of n-1 years of the estimated service life (n). Subsequently, three representative rain events are simulated to evaluate the long-term performance by dissolved copper and zinc during the last year of application. The presented results, which verified the applicability of this method, were obtained for three filter channel systems and six filter shaft systems. The performance of the evaluated systems varied largely for both tested heavy metals and during all three simulated rain events. A validation of the pilot-scale assessment method with field measurements was also performed for two systems. Findings of this study suggest that this novel method does provide a standardized and accurate estimation of service intervals of decentralized treatment systems employing various filter materials. The method also provides regulatory authorities, designers, and operators with an objective basis for performance assessment and supports stormwater managers to make decisions for the installation of such decentralized treatment systems.


Assuntos
Filtração/instrumentação , Purificação da Água/instrumentação , Purificação da Água/métodos , Cobre/isolamento & purificação , Filtração/métodos , Metais Pesados/isolamento & purificação , Veículos Automotores , Projetos Piloto , Chuva , Reprodutibilidade dos Testes , Poluentes Químicos da Água/isolamento & purificação , Zinco/isolamento & purificação
19.
Environ Sci Technol ; 49(5): 2815-22, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25642587

RESUMO

Four pathogenic virus removal mechanisms were investigated in a full-scale membrane bioreactor (MBR; nominal pore size 0.04 µm): (i) attachment of virus to mixed liquor solids; (ii) virus retention by a just backwashed membrane; (iii) virus retention by the membrane cake layer; and (iv) inactivation. We quantified adenovirus, norovirus genogroup II (GII), and F+ coliphage in the influent wastewater, the solid and liquid fractions of the mixed liquor, return flow, and permeate using quantitative PCR (adenovirus and norovirus GII) and infectivity assays (F+ coliphage). Permeate samples were collected 4-5 days, 1 day, 3 h, and immediately after chlorine enhanced backwashes. The MBR achieved high log removals for adenovirus (3.9 to 5.5), norovirus GII (4.6 to 5.7), and F+ coliphage (5.4 to 7.1). The greatest contribution to total removal was provided by the backwashed membrane, followed by inactivation, the cake layer, and attachment to solids. Increases in turbidity and particle counts after backwashes indicated potential breakthrough of particles, but virus removal following backwashes was still high. This study demonstrates the ability of the MBR process to provide over 4 logs of removal for adenovirus and norovirus GII, even after a partial loss of the cake layer, and provides evidence for assigning virus disinfection credit to similar MBRs used to reclaim wastewater for reuse.


Assuntos
Adenoviridae/isolamento & purificação , Reatores Biológicos/virologia , Membranas Artificiais , Norovirus/isolamento & purificação , Águas Residuárias , Poluentes da Água , Cloro , Colífagos/isolamento & purificação , Desinfecção/instrumentação , Recuperação e Remediação Ambiental/métodos , Purificação da Água/instrumentação
20.
Anal Chem ; 86(1): 774-82, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24328196

RESUMO

An evaluation of existing analytical methods used to measure contaminants of emerging concern (CECs) was performed through an interlaboratory comparison involving 25 research and commercial laboratories. In total, 52 methods were used in the single-blind study to determine method accuracy and comparability for 22 target compounds, including pharmaceuticals, personal care products, and steroid hormones, all at ng/L levels in surface and drinking water. Method biases ranged from <10% to well over 100% in both matrixes, suggesting that while some methods are accurate, others can be considerably inaccurate. In addition, the number and degree of outliers identified suggest a high degree of variability may be present between methods currently in use. Three compounds, ciprofloxacin, 4-nonylphenol (NP), and 4-tert-octylphenol (OP), were especially difficult to measure accurately. While most compounds had overall false positive rates of ≤5%, bisphenol A, caffeine, NP, OP, and triclosan had false positive rates >15%. In addition, some methods reported false positives for 17ß-estradiol and 17α-ethynylestradiol in unspiked drinking water and deionized water, respectively, at levels higher than published predicted no-effect concentrations for these compounds in the environment. False negative rates were also generally <5%; however, rates were higher for the steroid hormones and some of the more challenging compounds, such as ciprofloxacin. The elevated false positive/negative rates of some analytes emphasize the susceptibility of many current methods to blank contamination, misinterpretation of background interferences, and/or inappropriate setting of detection/quantification levels for analysis at low ng/L levels. The results of both comparisons were collectively assessed to identify parameters that resulted in the best overall method performance. Liquid chromatography-tandem mass spectrometry coupled with the calibration technique of isotope dilution were able to accurately quantify most compounds with an average bias of <10% for both matrixes. These findings suggest that this method of analysis is suitable at environmentally relevant levels for most of the compounds studied. This work underscores the need for robust, standardized analytical methods for CECs to improve data quality, increase comparability between studies, and help reduce false positive and false negative rates.


Assuntos
Laboratórios/normas , Extração Líquido-Líquido/normas , Poluentes Químicos da Água/análise , Extração Líquido-Líquido/métodos , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA