Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 37(11): 2048-59, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20585774

RESUMO

PURPOSE: The primary purpose of this study was to assess the biodistribution and radiation dose resulting from administration of (18)F-EF5, a lipophilic 2-nitroimidazole hypoxia marker in ten cancer patients. For three of these patients (with glioblastoma) unlabeled EF5 was additionally administered to allow the comparative assessment of (18)F-EF5 tumor uptake with EF5 binding, the latter measured in tumor biopsies by fluorescent anti-EF5 monoclonal antibodies. METHODS: (18)F-EF5 was synthesized by electrophilic addition of (18)F(2) gas, made by deuteron bombardment of a neon/fluorine mixture in a high-pressure gas target, to an allyl precursor in trifluoroacetic acid at 0° then purified and administered by intravenous bolus. Three whole-body images were collected for each of ten patients using an Allegro (Philips) scanner. Gamma counts were determined in blood, drawn during each image, and urine, pooled as a single sample. PET images were analyzed to determine radiotracer uptake in several tissues and the resulting radiation dose calculated using OLINDA software and standard phantom. For three patients, 21 mg/kg unlabeled EF5 was administered after the PET scans, and tissue samples obtained the next day at surgery to determine EF5 binding using immunohistochemistry techniques (IHC). RESULTS: EF5 distributes evenly throughout soft tissue within minutes of injection. Its concentration in blood over the typical time frame of the study (∼3.5 h) was nearly constant, consistent with a previously determined EF5 plasma half-life of ∼13 h. Elimination was primarily via urine and bile. Radiation exposure from labeled EF5 is similar to other (18)F-labeled imaging agents (e.g., FDG and FMISO). In a de novo glioblastoma multiforme patient, focal uptake of (18)F-EF5 was confirmed by IHC. CONCLUSION: These results confirm predictions of biodistribution and safety based on EF5's characteristics (high biological stability, high lipophilicity). EF5 is a novel hypoxia marker with unique pharmacological characteristics allowing both noninvasive and invasive measurements.


Assuntos
Neoplasias Encefálicas/metabolismo , Etanidazol/análogos & derivados , Radioisótopos de Flúor , Glioblastoma/metabolismo , Hidrocarbonetos Fluorados/metabolismo , Hidrocarbonetos Fluorados/farmacocinética , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Hipóxia Celular , Etanidazol/metabolismo , Etanidazol/farmacocinética , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Radiometria , Distribuição Tecidual , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA