Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(21): 7600-5, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821795

RESUMO

Despite its function in sex determination and its role in driving genome evolution, the Y chromosome remains poorly understood in most species. Y chromosomes are gene-poor, repeat-rich and largely heterochromatic and therefore represent a difficult target for genetic engineering. The Y chromosome of the human malaria vector Anopheles gambiae appears to be involved in sex determination although very little is known about both its structure and function. Here, we characterize a transgenic strain of this mosquito species, obtained by transposon-mediated integration of a transgene construct onto the Y chromosome. Using meganuclease-induced homologous repair we introduce a site-specific recombination signal onto the Y chromosome and show that the resulting docking line can be used for secondary integration. To demonstrate its utility, we study the activity of a germ-line-specific promoter when located on the Y chromosome. We also show that Y-linked fluorescent transgenes allow automated sex separation of this important vector species, providing the means to generate large single-sex populations. Our findings will aid studies of sex chromosome function and enable the development of male-exclusive genetic traits for vector control.


Assuntos
Anopheles/genética , Cromossomos de Insetos/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Cromossomo Y/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos , Primers do DNA/genética , Citometria de Fluxo , Fluorescência , Técnicas de Introdução de Genes , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Análise de Sequência de RNA , Espermatogênese/fisiologia , Transgenes/genética
2.
BMC Genomics ; 15: 1038, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25432596

RESUMO

BACKGROUND: Only a small fraction of the mosquito species of the genus Anopheles are able to transmit malaria, one of the biggest killer diseases of poverty, which is mostly prevalent in the tropics. This diversity has genetic, yet unknown, causes. In a further attempt to contribute to the elucidation of these variances, the international "Anopheles Genomes Cluster Consortium" project (a.k.a. "16 Anopheles genomes project") was established, aiming at a comprehensive genomic analysis of several anopheline species, most of which are malaria vectors. In the frame of the international consortium carrying out this project our team studied the genes encoding families of non-coding RNAs (ncRNAs), concentrating on four classes: microRNA (miRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and in particular small nucleolar RNA (snoRNA) and, finally, transfer RNA (tRNA). RESULTS: Our analysis was carried out using, exclusively, computational approaches, and evaluating both the primary NGS reads as well as the respective genome assemblies produced by the consortium and stored in VectorBase; moreover, the results of RNAseq surveys in cases in which these were available and meaningful were also accessed in order to obtain supplementary data, as were "pre-genomic era" sequence data stored in nucleic acid databases. The investigation included the identification and analysis, in most species studied, of ncRNA genes belonging to several families, as well as the analysis of the evolutionary relations of some of those genes in cross-comparisons to other members of the genus Anopheles. CONCLUSIONS: Our study led to the identification of members of these gene families in the majority of twenty different anopheline taxa. A set of tools for the study of the evolution and molecular biology of important disease vectors has, thus, been obtained.


Assuntos
Anopheles/genética , Genoma de Inseto , Família Multigênica , RNA não Traduzido/genética , Animais , Anopheles/classificação , Sequência de Bases , MicroRNAs/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/genética , RNA não Traduzido/química , Alinhamento de Sequência
3.
PLoS Negl Trop Dis ; 9(2): e0003479, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25646954

RESUMO

BACKGROUND: Ontologies represent powerful tools in information technology because they enhance interoperability and facilitate, among other things, the construction of optimized search engines. To address the need to expand the toolbox available for the control and prevention of vector-borne diseases we embarked on the construction of specific ontologies. We present here IDODEN, an ontology that describes dengue fever, one of the globally most important diseases that are transmitted by mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: We constructed IDODEN using open source software, and modeled it on IDOMAL, the malaria ontology developed previously. IDODEN covers all aspects of dengue fever, such as disease biology, epidemiology and clinical features. Moreover, it covers all facets of dengue entomology. IDODEN, which is freely available, can now be used for the annotation of dengue-related data and, in addition to its use for modeling, it can be utilized for the construction of other dedicated IT tools such as decision support systems. CONCLUSIONS/SIGNIFICANCE: The availability of the dengue ontology will enable databases hosting dengue-associated data and decision-support systems for that disease to perform most efficiently and to link their own data to those stored in other independent repositories, in an architecture- and software-independent manner.


Assuntos
Ontologias Biológicas , Dengue/transmissão , Software , Animais , Bases de Dados Factuais , Humanos
4.
Pathog Glob Health ; 109(5): 207-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26369436

RESUMO

The draft genome sequence of Italian specimens of the Asian tiger mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae) was determined using a standard NGS (next generation sequencing) approach. The size of the assembled genome is comparable to that of Aedes aegypti; the two mosquitoes are also similar as far as the high content of repetitive DNA is concerned, most of which is made up of transposable elements. Although, based on BUSCO (Benchmarking Universal Single-Copy Orthologues) analysis, the genome assembly reported here contains more than 99% of protein-coding genes, several of those are expected to be represented in the assembly in a fragmented state. We also present here the annotation of several families of genes (tRNA genes, miRNA genes, the sialome, genes involved in chromatin condensation, sex determination genes, odorant binding proteins and odorant receptors). These analyses confirm that the assembly can be used for the study of the biology of this invasive vector of disease.


Assuntos
Aedes/genética , Genoma de Inseto , Análise de Sequência de DNA , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Masculino , Anotação de Sequência Molecular , Fases de Leitura Aberta
5.
Science ; 347(6217): 1258522, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25554792

RESUMO

Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.


Assuntos
Anopheles/genética , Evolução Molecular , Genoma de Inseto , Insetos Vetores/genética , Malária/transmissão , Animais , Anopheles/classificação , Sequência de Bases , Cromossomos de Insetos/genética , Drosophila/genética , Humanos , Insetos Vetores/classificação , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
6.
J Biomed Semantics ; 4(1): 16, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24034841

RESUMO

BACKGROUND: With about half a billion cases, of which nearly one million fatal ones, malaria constitutes one of the major infectious diseases worldwide. A recently revived effort to eliminate the disease also focuses on IT resources for its efficient control, which prominently includes the control of the mosquito vectors that transmit the Plasmodium pathogens. As part of this effort, IDOMAL has been developed and it is continually being updated. FINDINGS: In addition to the improvement of IDOMAL's structure and the correction of some inaccuracies, there were some major subdomain additions such as a section on natural products and remedies, and the import, from other, higher order ontologies, of several terms, which were merged with IDOMAL terms. Effort was put on rendering IDOMAL fully compatible as an extension of IDO, the Infectious Disease Ontology. The reason for the difficulties in fully reaching that target were the inherent differences between vector-borne diseases and "classical" infectious diseases, which make it necessary to specifically adjust the ontology's architecture in order to comprise vectors and their populations. CONCLUSIONS: In addition to a higher coverage of domain-specific terms and optimizing its usage by databases and decision-support systems, the new version of IDOMAL described here allows for more cross-talk between it and other ontologies, and in particular IDO. The malaria ontology is available for downloading at the OBO Foundry (http://www.obofoundry.org/cgi-bin/detail.cgi?id=malaria_ontology) and the NCBO BioPortal (http://bioportal.bioontology.org/ontologies/1311).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA