Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 93: 32-43, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26902968

RESUMO

Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06µm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.


Assuntos
Ventrículos do Coração/metabolismo , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Animais , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Ligação Proteica , Transporte Proteico , Tubulina (Proteína)/metabolismo
2.
J Mol Cell Cardiol ; 66: 63-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24215710

RESUMO

Ca(2+) flux through l-type CaV1.2 channels shapes the waveform of the ventricular action potential (AP) and is essential for excitation-contraction (EC) coupling. Timothy syndrome (TS) is a disease caused by a gain-of-function mutation in the CaV1.2 channel (CaV1.2-TS) that decreases inactivation of the channel, which increases Ca(2+) influx, prolongs APs, and causes lethal arrhythmias. Although many details of the CaV1.2-TS channels are known, the cellular mechanisms by which they induce arrhythmogenic changes in intracellular Ca(2+) remain unclear. We found that expression of CaV1.2-TS channels increased sarcolemmal Ca(2+) "leak" in resting TS ventricular myocytes. This resulted in higher diastolic [Ca(2+)]i in TS ventricular myocytes compared to WT. Accordingly, TS myocytes had higher sarcoplasmic reticulum (SR) Ca(2+) load and Ca(2+) spark activity, larger amplitude [Ca(2+)]i transients, and augmented frequency of Ca(2+) waves. The large SR Ca(2+) release in TS myocytes had a profound effect on the kinetics of CaV1.2 current in these cells, increasing the rate of inactivation to a high, persistent level. This limited the amount of influx during EC coupling in TS myocytes. The relationship between the level of expression of CaV1.2-TS channels and the probability of Ca(2+) wave occurrence was non-linear, suggesting that even low levels of these channels were sufficient to induce maximal changes in [Ca(2+)]i. Depolarization of WT cardiomyocytes with a TS AP waveform increased, but did not equalize [Ca(2+)]i, compared to depolarization of TS myocytes with the same waveform. We propose that CaV1.2-TS channels increase [Ca(2+)] in the cytosol and the SR, creating a Ca(2+)overloaded state that increases the probability of arrhythmogenic spontaneous SR Ca(2+) release.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Ventrículos do Coração/metabolismo , Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Sindactilia/metabolismo , Potenciais de Ação/fisiologia , Animais , Transtorno Autístico , Canais de Cálcio Tipo L/genética , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Expressão Gênica , Ventrículos do Coração/patologia , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Camundongos , Miócitos Cardíacos/patologia , Retículo Sarcoplasmático/metabolismo , Sindactilia/genética , Sindactilia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA