Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(35): e2102558, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34293248

RESUMO

The additive strategy is widely used in optimizing the morphology of organic solar cells (OSCs). The majority of additives are liquid with high boiling points, which will be trapped within device and consequently deteriorate performance during operation. In this work, solid but volatile additives 2-(4-fluorobenzylidene)-1H-indene-1,3(2H)-dione (INB-F) and 2-(4-chlorobenzylidene)-1H-indene-1,3(2H)-dione (INB-Cl) are designed to replace the common 1,8-diiodooctane (DIO) in nonfullerene OSCs. These additives present during solution casting but evaporate after moderate heating. Molecular dynamics simulations show that they can reduce the adsorption energy to improve π-π stacking among nonfullerene acceptor (NFA) molecules, an effect that enhances light absorption and electron mobility. Both INB-F and INB-Cl enhance efficiency, with INB-F achieving a maximum efficiency of 16.7% from 15.1% of the reference PBDB-T-2F (PM6):BTP-BO-4F (Y6-BO) cell, and outperforming DIO. Remarkably, they can simultaneously enhance the operational stability, with the INB-F-treated OSC maintaining over 60% of the initial efficiency after 1000 h operation, demonstrating a T80 lifetime of 523 h, which is a significant improvement over T80 values of 66.2 h for the reference and 6.6 h for DIO-treated OSC. The simultaneously enhanced efficiency and operational lifetime are also effective in PM6:BTP-BO-4Cl (Y7-BO) OSCs, demonstrating a universal strategy to improve the performance of OSCs.

2.
Chemistry ; 27(9): 2908-2919, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32596831

RESUMO

One important feature of organic semiconductors is their solution processability, which allows researchers to tune their aggregation states in solution and solid states and to control the processing conditions to reach desirable electronic and optoelectronic properties. Temperature is one of the most important processing parameters of organic semiconductors and has been studied extensively particularly for those conjugated small- and macro- molecules with strong temperature-dependent aggregation properties. This minireview summarizes the temperature-induced aggregation behaviors of organic semiconductors in solution, during solution casting and upon thermal annealing post-treatment of solid-state thin films. The influences of different aggregation states on the optoelectronic properties, in particular the photovoltaic properties, are discussed. The conclusions in this work will provide a rational guide to precisely control the aggregation states of organic semiconductors to fabricate high-performance optoelectronic devices.

3.
Nat Commun ; 15(1): 681, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302472

RESUMO

Ultraflexible organic photovoltaics have emerged as a potential power source for wearable electronics owing to their stretchability and lightweight nature. However, waterproofing ultraflexible organic photovoltaics without compromising mechanical flexibility and conformability remains challenging. Here, we demonstrate waterproof and ultraflexible organic photovoltaics through the in-situ growth of a hole-transporting layer to strengthen interface adhesion between the active layer and anode. Specifically, a silver electrode is deposited directly on top of the active layers, followed by thermal annealing treatment. Compared with conventional sequentially-deposited hole-transporting layers, the in-situ grown hole-transporting layer exhibits higher thermodynamic adhesion between the active layers, resulting in better waterproofness. The fabricated 3 µm-thick organic photovoltaics retain 89% and 96% of their pristine performance after immersion in water for 4 h and 300 stretching/releasing cycles at 30% strain under water, respectively. Moreover, the ultraflexible devices withstand a machine-washing test with such a thin encapsulation layer, which has never been reported. Finally, we demonstrate the universality of the strategy for achieving waterproof solar cells.

4.
Sci Adv ; 10(30): eadp2679, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39047100

RESUMO

Ultrathin flexible photodetectors can be conformably integrated with the human body, offering promising advancements for emerging skin-interfaced sensors. However, the susceptibility to degradation in ambient and particularly in aqueous environments hinders their practical application. Here, we report a 3.2-micrometer-thick water-resistant organic photodetector capable of reliably monitoring vital sign while submerged underwater. Embedding the organic photoactive layer in an adhesive elastomer matrix induces multidimensional hybrid phase separation, enabling high adhesiveness of the photoactive layer on both the top and bottom surfaces with maintained charge transport. This improves the water-immersion stability of the photoactive layer and ensures the robust sealing of interfaces within the device, notably suppressing fluid ingression in aqueous environments. Consequently, our fabricated ultrathin organic photodetector demonstrates stability in deionized water or cell nutrient media over extended periods, high detectivity, and resilience to cyclic mechanical deformation. We also showcase its potential for vital sign monitoring while submerged underwater.

5.
Nat Commun ; 15(1): 4902, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851770

RESUMO

Intrinsically stretchable organic photovoltaics have emerged as a prominent candidate for the next-generation wearable power generators regarding their structural design flexibility, omnidirectional stretchability, and in-plane deformability. However, formulating strategies to fabricate intrinsically stretchable organic photovoltaics that exhibit mechanical robustness under both repetitive strain cycles and high tensile strains remains challenging. Herein, we demonstrate high-performance intrinsically stretchable organic photovoltaics with an initial power conversion efficiency of 14.2%, exceptional stretchability (80% of the initial power conversion efficiency maintained at 52% tensile strain), and cyclic mechanical durability (95% of the initial power conversion efficiency retained after 100 strain cycles at 10%). The stretchability is primarily realised by delocalising and redistributing the strain in the active layer to a highly stretchable PEDOT:PSS electrode developed with a straightforward incorporation of ION E, which simultaneously enhances the stretchability of PEDOT:PSS itself and meanwhile reinforces the interfacial adhesion with the polyurethane substrate. Both enhancements are pivotal factors ensuring the excellent mechanical durability of the PEDOT:PSS electrode, which further effectively delays the crack initiation and propagation in the top active layer, and enables the limited performance degradation under high tensile strains and repetitive strain cycles.

6.
ACS Appl Mater Interfaces ; 15(17): 21314-21323, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37084756

RESUMO

Organic photovoltaics (OPVs) have unique advantages of low weight, mechanical flexibility, and solution processability, which make them exceptionally suitable for integrating low-power Internet of Things devices. However, achieving improved operational stability together with solution processes that are applicable to large-scale fabrication remains challenging. Their major limitation arises due to the instable factors that occur both inside the thick active film and from the ambient environment, which cannot be completely resolved via the current encapsulation techniques used for flexible OPVs. Additionally, thin active layers are highly vulnerable to point defects, which result in low yield rates and impede the laboratory-to-industry translation. In this study, flexible fully solution-processed OPVs with improved indoor efficiency and long-term operational stability than that of conventional OPVs with evaporated electrodes are achieved. Benefiting from the oxygen and water vapor permeation barrier of the spontaneously formed gallium oxide layers on the exposed eutectic gallium-indium surface, fast degradation of the OPVs with thick active layers is prevented, maintaining 93% of its initial Pmax after 5000 min of indoor operation under 1000 lx light-emitting diode (LED) illumination. Additionally, by using the thick active layer, spin-coated silver nanowires could be directly used as bottom electrodes without complicated flattening processes, thereby substantially simplifying the fabrication process and proposing a promising manufacturing technique for devices with high-throughput energy demands.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36896972

RESUMO

Insufficient interfacial adhesion is a widespread problem across multilayered devices that undermines their reliability. In flexible organic photovoltaics (OPVs), poor interfacial adhesion can accelerate degradation and failure under mechanical deformations due to the intrinsic brittleness and mismatching mechanical properties between functional layers. We introduce an argon plasma treatment for OPV devices, which yields 58% strengthening in interfacial adhesion between an active layer and a MoOX hole transport layer, thus contributing to mechanical reliability. The improved adhesion is attributed to the increased surface energy of the active layer that occurred after the mild argon plasma treatment. The mechanically stabilized interface retards the flexible device degradation induced by mechanical stress and maintains a power conversion efficiency of 94.8% after 10,000 cycles of bending with a radius of 2.5 mm. In addition, a fabricated 3 µm thick ultraflexible OPV device shows excellent mechanical robustness, retaining 91.0% of the initial efficiency after 1000 compressing-stretching cycles with a 40% compression ratio. The developed ultraflexible OPV devices can operate stably at the maximum power point under continuous 1 sun illumination for 500 min with an 89.3% efficiency retention. Overall, we validate a simple interfacial linking strategy for efficient and mechanically robust flexible and ultraflexible OPVs.

8.
ACS Appl Mater Interfaces ; 11(39): 35827-35834, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31507160

RESUMO

An in situ spectroscopy ellipsometry technique is utilized to probe the molecular ordering sequences of PBDB-T-2F/IT-4F/COi8DFIC ternary photovoltaic blends fabricated by bar-coating in air. The time-resolved dynamics show that the primary electron acceptor IT-4F aggregates ahead of the secondary acceptor COi8DFIC in the bar-coated photoactive layer, although the latter has much stronger crystallization ability. Wetting coefficient analysis supports that COi8DFIC locates at the interface between the host components PBDB-T-2F and IT-4F. We demonstrate that the suitable degree of phase separation with the presence of 20 wt % COi8DFIC facilitates exciton dissociation and charge transfer, leading to a remarkable power conversion efficiency of 13.2% as well as excellent stability of ternary organic solar cells (OSCs), which is among the highest reported efficiency for OSCs that were fabricated by scalable solution-casting in ambient conditions.

9.
ACS Appl Mater Interfaces ; 11(46): 43452-43459, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31659892

RESUMO

Two-dimensional (2D)/three-dimensional (3D) perovskites have been successfully applied in high-efficiency light-emitting diodes (LEDs) because of their large exciton binding energy (Eb) caused by the quantum and dielectric confinements. Thermal annealing and antisolvent treatments are usually executed in order to promote the crystallization and film quality of perovskites, which add complexity to the device fabrication process. Here, the cesium-based 2D/3D perovskite was prepared by introducing ammonium halide benzamidine hydrochloride (BMCl) as the additive. By further introducing an appropriate amount of MABr and PbBr2, BM2(Cs1-xMAxPbBr3)n-1PbBr4 crystals can be formed rapidly without any additional treatments, while inhibiting the formation of the unfavorable Cs4PbBr6 phase. The optimized 2D/3D perovskite-based LEDs achieved a maximum luminance of 12 367 Cd/m2, a current efficiency of 17.4 Cd/A, and an external quantum efficiency of 5.2%. Our results suggest that appropriate perovskite crystallization can be achieved at room temperature by the regulation of precursor solution, making the perovskite crystallization process easier to control with reduced processing complexity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA