Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(24): 8357-61, 2009 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-19462938

RESUMO

Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). The results obtained from these two methods were consistent. Both showed that mixing a nonionic conventional surfactant, either Brij-35 or TX-100, enhanced the exchange process between the 14-2-14 molecules in the mixed micelles and those in the bulk solution. In contrast, the anionic surfactant SDS and the cationic surfactant TTAB slowed the process slightly.


Assuntos
Compostos de Amônio Quaternário/química , Tensoativos/química , Termodinâmica , Cátions/química , Espectroscopia de Ressonância Magnética/métodos , Micelas , Octoxinol/química , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Soluções , Compostos de Trimetil Amônio/química
2.
J Phys Chem B ; 112(10): 2874-9, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18275185

RESUMO

The exchange kinetics of cationic gemini surfactants of the alkanediyl-alpha-omega-bis(tetradecyldimethylammonium bromide) type, with alkanediyl being 1,2-ethylene, 1,3-propylene, and 1,4-butylene, were investigated by 1H NMR, 2D COSY, and 2D EXSY experiments. In contrast to the conventional surfactants, a second set of well-resolved resonance peaks appeared in the 1H NMR spectra of these surfactants when their concentrations reached their critical concentrations. These two sets of resonance peaks originate from their monomers and micelles, which are proved by the correlation in the 2D COSY experiments and the cross polarization in the 2D NOESY spectra. Therefore, exchanges between monomers in the bulk solution and in the micelles or other aggregates of this series of surfactants occur slowly on the NMR time scale. The exchange rate constants were obtained by both NMR line shape analysis and 2D EXSY experiments, which are very consistent with each other. The exchange rate constants for the gemini surfactants were found to be orders of magnitude less than those for the conventional single surfactants, and for geminis 14-s-14, the shorter the spacer, the slower the exchange dynamic. It still has been found that the fast exchange between monomers in the bulk solution and in the micelles for gemini surfactant 12-2-12 at 25 degrees C occurs slowly at 5 degrees C on the NMR time scale.

3.
J Colloid Interface Sci ; 273(2): 626-31, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15082402

RESUMO

NMR self-diffusion coefficient measurements have been used to study the properties of polyethylene glycol (23) lauryl ether (Brij-35) with cetyltrimethylammonium bromide (CTAB) in the mixed aqueous solutions with different mole fractions of CTAB. By fitting the self-diffusion coefficients to the two-state exchange model, the critical micelle concentrations of the two solutes in the mixed solutions (cmc*1 and cmc*2) were obtained. The critical mixed micelle concentrations (cmc*) were then evaluated by the sum of cmc*1 and cmc*2, which are in good agreement with the results measured by the surface tension method. The cmc* values are lower than those of the ideal case of mixing, which indicates that the behavior of the CTAB/Brij-35 system is nonideal. Moderate interactions between CTAB and Brij-35 in their mixtures can be deduced from the interaction parameters (betaM) based on the cmc* obtained by the NMR self-diffusion method. The compositions (x1) of the mixed micelles at different total surfactant concentrations were also evaluated. By using these results, a possible mechanism of mixed micellar formation and a picture of the formation of nonsimultaneous CTAB/Brij-35 binary mixed micelle were proposed. In contrast to the case of CTAB/TX-100 system, Brij-35 molecules have a tendency to form micelles first at any mole fraction of CTAB. The mixed micellar self-diffusion coefficients (Dm) increase slightly at lower CTAB molar ratios, and then speed up with increasing CTAB mole fraction.

4.
J Colloid Interface Sci ; 249(1): 200-8, 2002 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16290587

RESUMO

(1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.5 to 2, respectively, at a constant concentration of 6 mM for Brij-35 in aqueous solutions. Results give information about the relative arrangement of the surfactant molecules in the mixed micelles. In the former system, the trimethyl groups attached to the polar heads of the CTAB molecules are located between the first oxy-ethylene groups next to the hydrophobic chains of Brij-35 molecules. These oxy-ethylene groups gradually move outward from the hydrophobic core of the mixed micelle with an increase in C/B in the mixed solution. In contrast to the case of the CTAB/Triton X-100 system, the long flexible hydrophilic poly oxy-ethylene chains, which are in the exterior part of the mixed micelles, remain coiled, but looser, surrounding the hydrophobic core. There is almost no variation in conformation of the hydrophilic chains of Brij-35 molecules in the mixed micelles of the SDS/Brij-35 system as the S/B increases. The hydrophobic chains of both CTAB and SDS are co-aggregated with Brij-35, respectively, in their mixed micellar cores.

5.
J Phys Chem B ; 115(9): 1986-90, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21319757

RESUMO

The dynamics of mixed surfactants in aqueous solution has been studied at a molecular level by nuclear magnetic resonance (NMR) spectroscopy. The line widths and line shapes of the resonance peaks of two types of binary mixed surfactant systems, ionic/nonionic mixed solutions (12-2-12/TX-100, 14-2-14/TX-100, 14-2-14/Brij-35, and SDS/TX-100) and ionic/ionic mixed solutions (12-2-12/TTAB and 14-2-14/TTAB), in the (1)H NMR spectra offered semiquantitative results about the influence of mixing on the surfactant exchange dynamics between monomers in aqueous solution and those in the micelles. The results showed that the exchange rates of the mixed surfactants were enhanced by each other for the three cationic/nonionic mixed solutions, while the exchange rates were lowered by each other for the two cationic/cationic mixed solutions. As for SDS/TX-100 mixed systems, the addition of SDS made the exchange rate of TX-100 in solution faster, while TX-100 made the exchange rate of SDS slower. These results provide some information about surfactant interaction in mixed solutions.

6.
J Phys Chem B ; 114(23): 7808-16, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20481561

RESUMO

This article provides a full description of the mixed micelle formation process at a molecular level. The mechanism of mixed micelle formation in binary surfactant aqueous solution systems, ionic/nonionic mixed systems (12-2-12/TX-100, 14-2-14/TX-100, and SDS/TX-100), and ionic/ionic mixed systems (12-2-12/TTAB, 14-2-14/TTAB, and SDS/CTAB), in heavy water solutions was studied by (1)H NMR spectroscopy. The critical micellization concentrations of each individual component in the mixed surfactant solutions were gained by analyzing changes in chemical shift and intensities of resonance peaks. The chemical shift changes indicated that in the 12-2-12/TX-100 and SDS/TX-100 systems, micelles of TX-100 formed first, and then 12-2-12 or SDS molecules were fused in the micelles, respectively, which has been proved by 2D NOESY experiments. In contrast, 14-2-14 was the first component to form the micelles in the 14-2-14/TX-100 system. Although 12-2-12 and 14-2-14 are analogs and differ only in the length of the hydrophobic chain by two methylene groups, they showed different behaviors in the micellization processes in the mixture with TX-100. The observation suggests that in the binary surfactant system under current study, the component with lower cmc in the mixed solution aggregates first; then, the other one fuses, resulting in the mixed micelles as the total concentration increases. The same results were obtained for the ionic/ionic solutions, 12-2-12/TTAB, 14-2-14/TTAB, and SDS/CTAB. The above results suggest that the two mixed surfactants do not aggregate synchronously. It obviously demonstrates that the so-called "cmc of the mixed surfactant solution" needs reconsideration.

7.
Langmuir ; 24(19): 10771-5, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18729337

RESUMO

The mechanism of micelle formation of surfactants sodium dodecyl sulfate (SDS), n-hexyldecyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) in heavy water solutions was studied by 1H NMR (chemical shift and line shape) and NMR self-diffusion experiments. 1H NMR and self-diffusion experiments of these three surfactants show that their chemical shifts (delta) begin to change and resonance peaks begins to broaden with the increase in concentration significantly below their critical micelle concentrations (cmc's). At the same time, self-diffusion coefficients ( D) of the surfactant molecules decrease simultaneously as their concentrations increase. These indicate that when the concentrations are near and lower than their cmc's, there are oligomers (premicelles) formed in these three surfactant systems. Carefully examining the dependence of chemical shift and self-diffusion coefficient on concentration in the region just slightly above their cmc's, one finds that the pseudophase transition model is not applicable to the variation of physical properties (chemical shift and self-diffusion coefficient) with concentration of these systems. This indicates that premicelles still exist in this concentration region along with the formation of micelles. The curved dependence of chemical shift and self-diffusion coefficient on the increase in concentration suggests that the premicelles grow as the concentration increases until a definite value when the size of the premicelle reaches that of the micelle, i.e., the system is likely dominated by the monomers and micelles. Additionally, the approximate values of premicelle coming forth concentration (pmc) and cmc were obtained by again fitting chemical shifts to reciprocals of concentrations at a different perspective, and are in good accordant with experimental results and literature values and prove the former conclusion.

8.
Langmuir ; 24(7): 3118-21, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18266397

RESUMO

Two quaternary ammonium Gemini surfactant series, 12-s-12, ([C(12)H(25)N+ (CH(3))(2)](2)(CH(2))(s).(2)Br(-)) and 14-s-14 ([C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(s).(2)Br(-)), where s = 2, 3, and 4, have been studied by the use of (1)H NMR in aqueous solution at concentrations below their critical micelle concentrations (CMC) at 25 degrees C. The appearance of a second set of peaks for the 14-s-14 series and the changes in chemical shifts, line widths, and line shapes of the 12-s-12 series with increasing concentration below the CMC are interpreted as evidence for the formation of premicelle aggregates (oligomers) that appear at approximately one-half their CMC values. Self-diffusion coefficients (D) and transverse relaxation times (T(2)) have also been detected and support the results obtained by (1)H NMR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA