Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(17): 11876-11886, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626315

RESUMO

Electrocatalytic reduction of biomass-derived furfural (FF) represents a sustainable route to produce furfuryl alcohol (FA) and 2-methylfuran (MF) as a value-added chemical and a biofuel, respectively. However, achieving high selectivity for MF as well as tuning the selectivity between FA and MF within one reaction system remain challenging. Herein, we have reported an electrode-electrolyte interface modification strategy, enabling FA and MF selectivity steering under the same reaction conditions. Specifically, by modifying copper (Cu) electrocatalysts with butyl trimethylammonium bromide (BTAB), we achieved a dramatic shift in selectivity from producing FA (selectivity: 83.8%; Faradaic efficiency, FE: 68.9%) to MF (selectivity: 80.1%; FE: 74.8%). We demonstrated that BTAB adsorption over Cu modulates the electrical double layer (EDL) structure, which repels interfacial water and weakens the hydrogen-bond (H-bond) network for proton transfer, thus impeding FF-to-FA conversion by suppression of the hydrogen atom transfer (HAT) process. On the contrary, FF-to-MF conversion was less affected. This work shows the potential of engineering of the electrode-electrolyte interface for selectivity control in electrocatalysis.

2.
J Am Chem Soc ; 146(8): 5622-5633, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373280

RESUMO

Ethylene glycol is an essential commodity chemical with high demand, which is conventionally produced via thermocatalytic oxidation of ethylene with huge fossil fuel consumption and CO2 emission. The one-step electrochemical approach offers a sustainable route but suffers from reliance on noble metal catalysts, low activity, and mediocre selectivity. Herein, we report a one-step electrochemical oxidation of ethylene to ethylene glycol over an earth-abundant metal-based molecular catalyst, a cobalt phthalocyanine supported on a carbon nanotube (CoPc/CNT). The catalyst delivers ethylene glycol with 100% selectivity and 1.78 min-1 turnover frequency at room temperature and ambient pressure, more competitive than those obtained over palladium catalysts. Experimental data demonstrate that the catalyst orchestrates multiple tasks in sequence, involving electrochemical water activation to generate high-valence Co-oxo species, ethylene epoxidation to afford an ethylene oxide intermediate via oxygen transfer, and eventually ring-opening of ethylene oxide to ethylene glycol facilitated by in situ formed Lewis acid site. This work offers a great opportunity for commodity chemicals synthesis based on a one-step, earth-abundant metal-catalyzed, and renewable electricity-driven route.

3.
Nano Lett ; 23(24): 11899-11906, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38071625

RESUMO

Cu-based catalysts possess great potential in the electrocatalytic nitrate (NO3-) reduction reaction for ammonia (NH3) synthesis. However, the low atomic economy limits their further application. Here we report a Cu single-atom (SA) incorporated in nitrogen-doped carbon (Cu SA/NC) with high atomic economy, which exhibits superior NH3 Faradaic efficiency (FE) of 100% along with an impressive NH3 yield rate of 7480 µg h-1 mgcat.-1. As counterparts, Cus+n/NC, with mixed SA and nanoparticles (NPs), shows decreasing NH3 FE with decreasing SA content, but the production of N2 and N2O increases gradually, which reaches the maximum on pure Cu NPs. In situ characterizations and theoretical calculations reveal that a higher NH3 FE of Cu SA/NC is ascribed to a lower free energy of the rate-limiting step (HNO* → N*) and effective inhibition for the N-N coupled process. This work provides the intuitive activity trends of Cu-based catalysts, opening an avenue for subsequent catalysts design.

4.
Angew Chem Int Ed Engl ; : e202407580, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821865

RESUMO

Electrocatalytic upgrading of wasted plastic and renewable biomass represents a sustainable method to produce chemicals but is limited to carbohydrates, leaving other value-added chemicals, such as organonitrogen compounds, being scarcely explored. Herein, we reported an electrocatalytic oxidation strategy to transform polyethylene terephthalate (PET) plastic-derived ethylene glycol (EG) and biomass-derived polyols into formamide, in the presence of ammonia (NH3) over a tungsten oxide (WO3) catalyst. Taking EG-to-formamide as an example, we achieved a high formamide productivity of 537.7 µmol cm-2 h-1 with FE of 43.2 % at a constant current of 100 mA cm-2 in a flow electrolyzer with 12-h test, representing a more advantageous performance compared with previous reports for formamide electrosynthesis. Mechanistic understanding revealed that the cleavage of the C-C bond in the EG was facilitated by nucleophilic attack of in situ formed nitrogen radicals from NH3, with resultant C-N bond construction and eventually formamide production. Furthermore, this strategy can be extended to transformation of PET bottle and a series of biomass-derived polyols with carbon number from three (glycerol) to six (glucose), producing formamide with high efficiencies. This work demonstrates a sustainable upgrading strategy of plastic and biomass that may have implications to more value-added chemicals production beyond carbohydrates.

5.
Angew Chem Int Ed Engl ; : e202406515, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38803131

RESUMO

Transformation of carbon dioxide and nitrate ions into urea offers an attractive route for both nitrogen fertilizer production and environmental remediation. However, achieving this transformation under mild conditions remains challenging. Herein, we report an efficient photoelectrochemical method for urea synthesis by co-reduction of carbon dioxide and nitrate ion over a Cu2O photocathode, delivering urea formation rate of 29.71±2.20 µmol g-1 h-1 and Faradaic efficiency (FE) of 12.90±1.15 % at low external potential (-0.017 V vs. reversible hydrogen electrode). Experimental data combined with theoretical calculations suggest that the adsorbed CO* and NO2* species are the key intermediates, and associated C-N coupling is the rate-determining step. This work demonstrates that Cu2O is an efficient catalyst to drive co-reduction of CO2 and NO3 - to urea under light irradiation with low external potential, showing great opportunity of photoelectrocatalysis as a sustainable tool for value-added chemical synthesis.

6.
Angew Chem Int Ed Engl ; 63(23): e202404911, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581238

RESUMO

Developing efficient and earth-abundant catalysts for CO2 fixation to high value-added chemicals is meaningful but challenging. Styrene carbonate has great market value, but the cycloaddition of CO2 to styrene oxide is difficult due to the high steric hindrance and weak electron-withdrawing ability of the phenyl group. To utilize clean energy (such as optical energy) directly and effectively for CO2 value-added process, we introduce earth-abundant Ti single-atom into the mesoporous nitrogen, oxygen-doped carbon nanosheets (Ti-CNO) by a two-step method. The Ti-CNO exhibits excellent photothermal catalytic activities and stability for cycloaddition of CO2 and styrene oxide to styrene carbonate. Under light irradiation and ambient pressure, an optimal Ti-CNO produces styrene carbonate with a yield of 98.3 %, much higher than CN (27.1 %). In addition, it shows remarkable stability during 10 consecutive cycles. Its enhanced catalytic performance stems from the enhanced photothermal effect and improved Lewis acidic/basic sites exposed by the abundant mesopores. The experiments and theoretical simulations demonstrate the styrene oxide⋅+ and CO2⋅- radicals generated at the Lewis acidic (Tiδ+) and basic sites of Ti-CNO under light irradiation, respectively. This work furnishes a strategy for synthesizing advanced single-atom catalysts for photo-thermal synergistic CO2 fixation to high value products via a cycloaddition pathway.

7.
J Am Chem Soc ; 145(11): 6144-6155, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36800212

RESUMO

Transformation of biomass and plastic wastes to value-added chemicals and fuels is considered an upcycling process that is beneficial to resource utilization. Electrocatalysis offers a sustainable approach; however, it remains a huge challenge to increase the current density and deliver market-demanded chemicals with high selectivity. Herein, we demonstrate an electrocatalytic strategy for upcycling glycerol (from biodiesel byproduct) to lactic acid and ethylene glycol (from polyethylene terephthalate waste) to glycolic acid, with both products being as valuable monomers for biodegradable polymer production. By using a nickel hydroxide-supported gold electrocatalyst (Au/Ni(OH)2), we achieve high selectivities of lactic acid and glycolic acid (77 and 91%, respectively) with high current densities at moderate potentials (317.7 mA/cm2 at 0.95 V vs RHE and 326.2 mA/cm2 at 1.15 V vs RHE, respectively). We reveal that glycerol and ethylene glycol can be enriched at the Au/Ni(OH)2 interface through their adjacent hydroxyl groups, substantially increasing local concentrations and thus high current densities. As a proof of concept, we employed a membrane-free flow electrolyzer for upcycling triglyceride and PET bottles, attaining 11.2 g of lactic acid coupled with 9.3 L of H2 and 13.7 g of glycolic acid coupled with 9.4 L of H2, respectively, revealing the potential of coproduction of valuable chemicals and H2 fuel from wastes in a sustainable fashion.

8.
Angew Chem Int Ed Engl ; 62(31): e202304852, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37278359

RESUMO

The development of a rechargeable battery that can produce valuable chemicals in both electricity storage and generation processes holds great promise for increasing the electron economy and economic value. However, this battery has yet to be explored. Herein, we report a biomass flow battery that generates electricity while producing furoic acid, and store electricity while yielding furfuryl alcohol. The battery is composed of a rhodium-copper (Rh1 Cu) single-atom alloy as anode, a cobalt-doped nickel hydroxide (Co0.2 Ni0.8 (OH)2 ) as cathode, and furfural-containing anolyte. In a full battery evaluation, this battery displays an open circuit voltage (OCV) of 1.29 V and a peak power density up to 107 mW cm-2 , surpassing most catalysis-battery hybrid systems. As a proof-of-concept, we demonstrate that this battery produces 1 kg furoic acid with 0.78 kWh electricity output, and yields 0.62 kg furfuryl alcohol when 1 kWh electricity is stored. This work may shed light on the design of rechargeable batteries with value-added functionality such as chemicals production.

9.
Angew Chem Int Ed Engl ; 62(15): e202219048, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807450

RESUMO

Transition-metal-based oxyhydroxides are efficient catalysts in biomass electrooxidation towards fossil-fuel-free production of valuable chemicals. However, identification of active sites remains elusive. Herein, using cobalt oxyhydroxide (CoOOH) as the archetype and the electrocatalyzed glucose oxidation reaction (GOR) as the model reaction, we track dynamic transformation of the electronic and atomic structure of the catalyst using a suite of operando and ex situ techniques. We reveal that two types of reducible Co3+ -oxo species are afforded for the GOR, including adsorbed hydroxyl on Co3+ ion (µ1 -OH-Co3+ ) and di-Co3+ -bridged lattice oxygen (µ2 -O-Co3+ ). Moreover, theoretical calculations unveil that µ1 -OH-Co3+ is responsible for oxygenation, while µ2 -O-Co3+ mainly contributes to dehydrogenation, both as key oxidative steps in glucose-to-formate transformation. This work provides a framework for mechanistic understanding of the complex near-surface chemistry of metal oxyhydroxides in biomass electrorefining.

10.
Angew Chem Int Ed Engl ; 62(3): e202213711, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36418219

RESUMO

Electrochemical reduction of nitrite (NO2 - ) offers an energy-efficient route for ammonia (NH3 ) synthesis and reduction of the level of nitrite, which is one of the major pollutants in water. However, the near 100 % Faradaic efficiency (FE) has yet to be achieved due to the complicated reduction route with several intermediates. Here, we report that carbon dioxide (CO2 ) can enhance the nitrite electroreduction to ammonia on copper nanowire (Cu NW) catalysts. In a broad potential range (-0.7∼-1.3 V vs. RHE), the FE of nitrite to ammonia is close to 100 % with a 3.5-fold increase in activity compared to that obtained without CO2. In situ Raman spectroscopy and density functional theory (DFT) calculations indicate that CO2 acts as a catalyst to facilitate the *NO to *N step, which is the rate determining step for ammonia synthesis. The promotion effect of CO2 can be expanded to electroreduction of other nitro-compounds, such as nitrate to ammonia and nitrobenzene to aniline.

11.
J Am Chem Soc ; 144(17): 7720-7730, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35352954

RESUMO

Photoelectrocatalytic (PEC) glycerol oxidation offers a sustainable approach to produce dihydroxyacetone (DHA) as a valuable chemical, which can find use in cosmetic, pharmaceutical industries, etc. However, it still suffers from the low selectivity (≤60%) that substantially limits the application. Here, we report the PEC oxidation of glycerol to DHA with a selectivity of 75.4% over a heterogeneous photoanode of Bi2O3 nanoparticles on TiO2 nanorod arrays (Bi2O3/TiO2). The selectivity of DHA can be maintained at ∼65% under a relatively high conversion of glycerol (∼50%). The existing p-n junction between Bi2O3 and TiO2 promotes charge transfer and thus guarantees high photocurrent density. Experimental combined with theoretical studies reveal that Bi2O3 prefers to interact with the middle hydroxyl of glycerol that facilitates the selective oxidation of glycerol to DHA. Comprehensive reaction mechanism studies suggest that the reaction follows two parallel pathways, including electrophilic OH* (major) and lattice oxygen (minor) oxidations. Finally, we designed a self-powered PEC system, achieving a DHA productivity of 1.04 mg cm-2 h-1 with >70% selectivity and a H2 productivity of 0.32 mL cm-2 h-1. This work may shed light on the potential of PEC strategy for biomass valorization toward value-added products via PEC anode surface engineering.


Assuntos
Di-Hidroxiacetona , Glicerol , Adsorção , Catálise , Di-Hidroxiacetona/metabolismo , Glicerol/metabolismo , Radical Hidroxila , Oxirredução
12.
Angew Chem Int Ed Engl ; 61(37): e202209849, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876073

RESUMO

Electrochemical reduction of biomass-derived 5-hydroxymethylfurfural (HMF) represents an elegant route toward sustainable value-added chemicals production that circumvents the use of fossil fuel and hydrogen. However, the reaction efficiency is hampered by the high voltage and low activity of electrodes (Cu, Bi, Pb). Herein, we report a Ru1 Cu single-atom alloy (SAA) catalyst with isolated Ru atoms on Cu nanowires that exhibits an electrochemical reduction of HMF to 2,5-dihydroxymethylfuran (DHMF) with promoted productivity (0.47 vs. 0.08 mmol cm-2 h-1 ) and faradic efficiency (FE) (85.6 vs. 71.3 %) at -0.3 V (vs. RHE) compared with Cu counterpart. More importantly, the FE (87.5 %) is largely retained at high HMF concentration (100 mM). Kinetic studies by using combined electrochemical techniques suggest disparate mechanisms over Ru1 Cu and Cu, revealing that single-atom Ru promotes the dissociation of water to produce H* species that effectively react with HMF via an electrocatalytic hydrogenation (ECH) mechanism.


Assuntos
Ligas , Furaldeído , Furaldeído/análogos & derivados , Hidrogenação , Cinética
13.
Angew Chem Int Ed Engl ; 61(19): e202200211, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35170172

RESUMO

The biomass-derived alcohol oxidation reaction (BDAOR) holds great promise for sustainable production of chemicals. However, selective electrooxidation of alcohols to value-added aldehyde compounds is still challenging. Herein, we report the electrocatalytic BDAORs to selectively produce aldehydes using single-atom ruthenium on nickel oxide (Ru1 -NiO) as a catalyst in the neutral medium. For electrooxidation of 5-hydroxymethylfurfural (HMF), Ru1 -NiO exhibits a low potential of 1.283 V at 10 mA cm-2 , and an optimal 2,5-diformylfuran (DFF) selectivity of 90 %. Experimental studies reveal that the neutral electrolyte plays a critical role in achieving a high aldehyde selectivity, and the single-atom Ru boosts HMF oxidation in the neutral medium by promoting water dissociation to afford OH*. Furthermore, Ru1 -NiO can be extended to selective electrooxidation of a series of biomass-derived alcohols to corresponding aldehydes, which are conventionally difficult to obtain in the alkaline medium.

14.
J Am Chem Soc ; 143(25): 9429-9439, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138542

RESUMO

Selective cleavage of C-C linkages is the key and a challenge for lignin degradation to harvest value-added aromatic compounds. To this end, electrocatalytic oxidation presents a promising technique by virtue of mild reaction conditions and strong sustainability. However, the existing electrocatalysts (traditional bulk metal and metal oxides) for C-C bond oxidative cleavage suffer from poor selectivity and low product yields. We show for the first time that atomically dispersed Pt-N3C1 sites planted on nitrogen-doped carbon nanotubes (Pt1/N-CNTs), constructed via a stepwise polymerization-carbonization-electrostatic adsorption strategy, are highly active and selective toward Cα-Cß bond cleavage in ß-O-4 model compounds under ambient conditions. Pt1/N-CNTs exhibits 99% substrate conversion with 81% yield of benzaldehyde, which is exceptional and unprecedented compared with previously reported electrocatalysts. Moreover, Pt1/N-CNTs using only 0.41 wt % Pt achieved a much higher benzaldehyde yield than those of the state-of-the-art bulk Pt electrode (100 wt % Pt) and commercial Pt/C catalyst (20 wt % Pt). Systematic experimental investigation together with density functional theory (DFT) calculation suggests that the superior performance of Pt1/N-CNTs arises from the atomically dispersed Pt-N3C1 sites facilitating the formation of a key Cß radical intermediate, further inducing a radical/radical cross-coupling path to break the Cα-Cß bond. This work opens up opportunities in lignin valorization via a green and sustainable electrochemical route with ultralow noble metal usage.

15.
Angew Chem Int Ed Engl ; 60(16): 8976-8982, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33555646

RESUMO

Oxidative cleavage of C(OH)-C bonds to afford carboxylates is of significant importance for the petrochemical industry and biomass valorization. Here we report an efficient electrochemical strategy for the selective upgrading of lignin derivatives to carboxylates by a manganese-doped cobalt oxyhydroxide (MnCoOOH) catalyst. A wide range of lignin-derived substrates with C(OH)-C or C(O)-C units undergo efficient cleavage to corresponding carboxylates in excellent yields (80-99 %) and operational stability (200 h). Detailed investigations reveal a tandem oxidation mechanism that base from the electrolyte converts secondary alcohols and their derived ketones to reactive nucleophiles, which are oxidized by electrophilic oxygen species on MnCoOOH from water. As proof of concept, this approach was applied to upgrade lignin derivatives with C(OH)-C or C(O)-C motifs, achieving convergent transformation of lignin-derived mixtures to benzoate and KA oil to adipate with 91.5 % and 64.2 % yields, respectively.

16.
Inorg Chem ; 59(3): 1804-1809, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940197

RESUMO

The rational design of hollow-structured materials with high specific area, advanced mass transfer, and exposure of selected sites is of great significance in both fundamental scientific research and applicable industrialization fields. In this work, we report a CoAl layered double hydroxides (LDH) nanoring evolved from integrate nanosheet in a urea hydrolysis process, showing enhanced oxygen reduction reaction activity. Detailed investigations into the evolution nature suggest that a gradient-increased Al3+ composition exists in the core region of the nanosheet arised from distinctly lower solubility of Al3+ than Co2+ in the synthesis; therefore, the selective etching of Al3+ by OH- produced from urea hydrolysis leads to the formation of nanoring structure. Probed as an oxygen reduction reaction catalyst, the CoAl-LDH nanoring illustrates a half-wave potential lowered by around 110 mV compared to the integrate nanosheet counterpart, which might be due to the exposure of more edge sites with higher activity. This work paves a novel route for fabricating hollow-structured Al-contained metal hydroxides with defined outer edge and inner voids for multiple purposes.

17.
Small ; 15(46): e1904043, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31529772

RESUMO

Electrocatalytic hydrogen evolution reaction (HER) is an efficient way to generate hydrogen fuel for the storage of renewable energy. Currently, the widely used Pt-based catalysts suffer from high costs and limited electrochemical stability; therefore, developing an efficient alternative catalyst is very urgent. Herein, one pot hydrothermal synthesis is reported of amorphous ruthenium-sulfide (RuSx ) nanoparticles (NPs) supported on sulfur-doped graphene oxide (GO). The as-obtained composite serves as a Pt-like HER electrocatalyst. Achieving a current density of -10 mA cm-2 only requires a small overpotential (-31, -46, and -58 mV in acidic, neutral, and alkaline electrolyte, respectively) with high durability. The isolated Ru active site inducing Volmer-Heyrovsky mechanism in the RuSx NPs is demonstrated by the Tafel analysis and X-ray absorption spectroscopy characterization. Theoretical simulation indicates the isolated Ru site exhibits Pt-like Gibbs free energy of hydrogen adsorption (-0.21 eV) therefore generating high intrinsic HER activity. Moreover, the strong bonding between the RuSx and S-GO, as well as pH tolerance of RuSx are believed to contribute to the high stability. This work shows a new insight for amorphous materials and provides alternative opportunities in designing advanced electrocatalysts with low-cost for HER in the hydrogen economy.

18.
Angew Chem Int Ed Engl ; 58(34): 11860-11867, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31183943

RESUMO

Although progress has been made to improve photocatalytic CO2 reduction under visible light (λ>400 nm), the development of photocatalysts that can work under a longer wavelength (λ>600 nm) remains a challenge. Now, a heterogeneous photocatalyst system consisting of a ruthenium complex and a monolayer nickel-alumina layered double hydroxide (NiAl-LDH), which act as light-harvesting and catalytic units for selective photoreduction of CO2 and H2 O into CH4 and CO under irradiation with λ>400 nm. By precisely tuning the irradiation wavelength, the selectivity of CH4 can be improved to 70.3 %, and the H2 evolution reaction can be completely suppressed under irradiation with λ>600 nm. The photogenerated electrons matching the energy levels of photosensitizer and m-NiAl-LDH only localized at the defect state, providing a driving force of 0.313 eV to overcome the Gibbs free energy barrier of CO2 reduction to CH4 (0.127 eV), rather than that for H2 evolution (0.425 eV).

19.
Angew Chem Int Ed Engl ; 57(30): 9392-9396, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29889350

RESUMO

Exploring materials with regulated local structures and understanding how the atomic motifs govern the reactivity and durability of catalysts are a critical challenge for designing advanced catalysts. Herein we report the tuning of the local atomic structure of nickel-iron layered double hydroxides (NiFe-LDHs) by partially substituting Ni2+ with Fe2+ to introduce Fe-O-Fe moieties. These Fe2+ -containing NiFe-LDHs exhibit enhanced oxygen evolution reaction (OER) activity with an ultralow overpotential of 195 mV at the current density of 10 mA cm-2 , which is among the best OER catalytic performance to date. In-situ X-ray absorption, Raman, and electrochemical analysis jointly reveal that the Fe-O-Fe motifs could stabilize high-valent metal sites at low overpotentials, thereby enhancing the OER activity. These results reveal the importance of tuning the local atomic structure for designing high efficiency electrocatalysts.

20.
J Am Chem Soc ; 139(15): 5494-5502, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28343390

RESUMO

The search for active, stable, and cost-efficient electrocatalysts for hydrogen production via water splitting could make a substantial impact on energy technologies that do not rely on fossil fuels. Here we report the synthesis of rhodium phosphide electrocatalyst with low metal loading in the form of nanocubes (NCs) dispersed in high-surface-area carbon (Rh2P/C) by a facile solvo-thermal approach. The Rh2P/C NCs exhibit remarkable performance for hydrogen evolution reaction and oxygen evolution reaction compared to Rh/C and Pt/C catalysts. The atomic structure of the Rh2P NCs was directly observed by annular dark-field scanning transmission electron microscopy, which revealed a phosphorus-rich outermost atomic layer. Combined experimental and computational studies suggest that surface phosphorus plays a crucial role in determining the robust catalyst properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA