Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 46(6): 1435-1446, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683630

RESUMO

It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep-wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in ß-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.


Assuntos
Anestésicos Intravenosos/farmacologia , Nível de Alerta/fisiologia , Núcleo Accumbens/metabolismo , Propofol/farmacologia , Receptores de Dopamina D1/metabolismo , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley
2.
Neurochem Res ; 43(4): 838-847, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29417470

RESUMO

It has been reported that central dopaminergic system is implicated in the mechanism underlying general anesthesia. Whether dopamine (DA) neurons in midbrain ventral periaqueductal gray (vPAG) are involved in general anesthesia and how general anesthetics affect these neurons remain sparsely documented. To determine the role of vPAG DA neurons in propofol-induced anesthesia, we performed microinjection of 6-hydroxydopamine (6-OHDA) into vPAG to damage DA neurons and investigated the alteration in somatosensory electroencephalogram (EEG), as well as the induction and recovery time of propofol anesthesia. Subsequently, we examined the effect of propofol on the electrophysiological activity of DA neurons in vPAG using whole-cell patch clamp. Two weeks after 6-OHDA microinfusion, DA neurons in the vPAG were markedly reduced by 63.6% in the 6-OHDA-treated rats compared with vehicle rats. This lesion significantly shortened the induction time (7.15 ± 3.97 s vs. 11.18 ± 2.83 s, P < 0.05) and prolonged the recovery time of propofol anesthesia (780.26 ± 150.86 s vs. 590.68 ± 107.97 s, P < 0.05). Meanwhile, EEG in somatosensory cortex revealed that delta power (0-4 Hz) was significantly higher in 6-OHDA-treated rats than vehicle rats. In the electrophysiological experiment, propofol decreased the frequency of spontaneous excitatory postsynaptic currents rather than the amplitude and decay time. In addition, propofol preferentially increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents without affecting the amplitude. SIGNIFICANCE: Propofol can promote presynaptic GABA release, inhibit presynaptic glutamate release and increase postsynaptic GABAA receptor sensitivity, which eventually inhibits the activity of vPAG DA neurons and thereby influences the state of consciousness.


Assuntos
Anestésicos Intravenosos/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Propofol/administração & dosagem , Animais , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Substância Cinzenta Periaquedutal/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Front Cardiovasc Med ; 10: 1168047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424900

RESUMO

Objectives: Obesity, especially abdominal obesity, increases the prevalence of metabolic and cardiovascular disease (CVD). Fibroblast growth factor 21 (FGF21) has been identified as a critical regulator playing a therapeutic role in diabetes and its complications. This study aims to evaluate the relationship between serum FGF21 levels and body shape parameters in patients with hypertension (HP) and type 2 diabetes mellitus (T2DM). Methods: Serum FGF21 levels were determined in 1,003 subjects, including 745 patients with T2DM, and 258 individuals were selected as a healthy control in this cross-sectional study. Results: Serum FGF21 levels were significantly higher in T2DM patients with HP than those without [534.9 (322.6-722.2) vs. 220.65 (142.8-347.55) pg/ml, p < 0.001], and levels in both of these two groups were significantly increased compared with that of healthy control [123.92 (67.23-219.32) pg/ml, all p < 0.001]. These differences were also observed in body shape parameters, including weight, waistline, body mass index (BMI), body shape index (ABSI), and the percentage of abdominal obesity. Serum FGF21 levels in T2DM patients were positively correlated with body shape parameters, including weight, waistline, neck circumference, BMI, ABSI, percent of abdominal obesity, and triglyceride, while negatively with estimated glomerular filtration rate (all p < 0.01). The significance remained stable when adjusted for age and T2DM duration. In addition, both serum FGF21 concentrations and waistline were independently associated with HP in T2DM patients after the adjustment for risk factors (all p < 0.05). ROC analysis for FGF21 levels of 745 patients with T2DM identified 411.33 pg/ml as an optimal cut-off point to predict HP, with a sensitivity and specificity of 66.0% and 84.9%, respectively. Conclusions: FGF21 resistance occurs in patients of HP in T2DM, and positively correlates with body shape parameters (especially waistline and BMI). High levels of FGF21 may be a compensatory reaction to offset HP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA