Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nitric Oxide ; 146: 1-9, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428514

RESUMO

BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.


Assuntos
Analgésicos , Canabidiol , Classe Ib de Fosfatidilinositol 3-Quinase , Canais KATP , Neuralgia , Óxido Nítrico Sintase Tipo I , Óxido Nítrico , Transdução de Sinais , Animais , Canabidiol/farmacologia , Canais KATP/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Analgésicos/farmacologia , Analgesia
2.
Pharmacology ; : 1-18, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643765

RESUMO

INTRODUCTION: Tissue injury results in the release of inflammatory mediators, including a cascade of algogenic substances, which contribute to the development of hyperalgesia. During this process, endogenous analgesic substances are peripherally released to counterbalance hyperalgesia. The present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE), and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the cholinergic system. METHODS: Male Swiss mice were subjected to paw withdrawal test. All the substances were injected via the intraplantar route. RESULTS: The main findings of this study were as follows: (1) carrageenan (Cg), TNF-α, CXCL-1, IL1-ß, NE, and PGE2 induced hyperalgesia; (2) the acetylcholinesterase enzyme inhibitor, neostigmine, reversed the hyperalgesia observed after Cg, TNF-α, CXCL-1, and IL1-ß injection; (3) the non-selective muscarinic receptor antagonist, atropine, and the selective muscarinic type 1 receptor (m1AChr) antagonist, telenzepine, potentiated the hyperalgesia induced by Cg and CXCL-1; (4) mecamylamine, a non-selective nicotinic receptor antagonist, potentiated the hyperalgesia induced by Cg, TNF-α, CXCL-1, and IL1-ß; (5) Cg, CXCL-1, and PGE2 increased the expression of the m1AChr and nicotinic receptor subunit α4protein. CONCLUSION: These results suggest that the cholinergic system may modulate the inflammatory pain induced by Cg, PGE2, TNF-α, CXCL-1, and IL1-ß.

3.
Biochem Biophys Res Commun ; 660: 58-64, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37068389

RESUMO

Cannabidiol (CBD) is the most abundant non-psychoactive component found in plants of the genus Cannabis. Its analgesic effect for the treatment of neuropathy has been widely studied. However, little is known about its effects in the acute treatment when Cannabidiol is administered peripherally. Because of that, this research was aimed to evaluate the antinociceptive effects of the CBD when administered peripherally for the treatment of acute neuropathic pain and check the involvement of the 5-HT1A and the TRPV1 receptors in this event. Neuropathic pain was induced with the constriction of the sciatic nerve while the nociceptive threshold was measured using the pressure test of the mouse paw. The technique used proved to be efficient to induce neuropathy, and the CBD (5, 10 and 30 µg/paw) induced the antinociception in a dosage-dependent manner. The dosage used that induced a more potent effect (30 µg/paw), did not induce a systemic response, as demonstrated by both the motor coordination assessment test (RotaRod) and the antinociceptive effect restricted to the paw treated with CBD. The administration of NAN-190 (10 µg/paw), a selective 5-HT1A receptor antagonist, and SB-366791 (16 µg/paw), a selective TRPV1 antagonist, partially reversed the CBD-induced antinociception. The results of the research suggest that the CBD produces the peripheral antinociception during the acute treatment of the neuropathic pain and it partially involved the participation of the 5-HT1A and TRPV1 receptors.


Assuntos
Canabidiol , Neuralgia , Camundongos , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Serotonina , Neuralgia/tratamento farmacológico , Modelos Animais de Doenças , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Receptor 5-HT1A de Serotonina , Canais de Cátion TRPV
4.
Toxicol Appl Pharmacol ; 369: 30-38, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30763598

RESUMO

Despite all the development of modern medicine, around 100 compounds derived from natural products were undergoing clinical trials only at the end of 2013. Among these natural substances in clinical trials, we found the resveratrol (RES), a pharmacological multi-target drug. RES analgesic properties have been demonstrated, although the bases of these mechanisms have not been fully elucidated. The aim of this study was to evaluate the involvement of opioid and cannabinoid systems in RES-induced peripheral antinociception. Paw withdrawal method was used and hyperalgesia was induced by carrageenan (200 µg/paw). All drugs were given by intraplantar injection in male Swiss mice (n = 5). RES (100 µg/paw) administered in the right hind paw induced local antinociception that was antagonized by naloxone, non-selective opioid receptor antagonist, and clocinnamox, µOR selective antagonist. Naltrindole and nor-binaltorfimine, selective antagonists for δOR and kOR, respectively, did not reverse RES-induced peripheral antinociception. CB1R antagonist AM251, but not CB2R antagonist AM630, antagonized RES-induced peripheral antinociception. Peripheral antinociception of RES intermediate-dose (50 µg/paw) was increased by: (i) bestatin, inhibitor of endogenous opioid degradation involved-enzymes; (ii) MAFP, inhibitor of anandamide amidase; (iii) JZL184, inhibitor of 2-arachidonoylglycerol degradation involved-enzyme; (iv) VDM11, endocannabinoid reuptake inhibitor. Acute and peripheral administration of RES failed to affect the amount of µOR, CB1R and CB2R. Experimental data suggest that RES induces peripheral antinociception through µOR and CB1R activation by endogenous opioid and endocannabinoid releasing.


Assuntos
Analgésicos/farmacologia , Endocanabinoides/metabolismo , Hiperalgesia/prevenção & controle , Dor Nociceptiva/prevenção & controle , Peptídeos Opioides/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptores Opioides mu/agonistas , Resveratrol/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Carragenina , Modelos Animais de Doenças , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/psicologia , Masculino , Camundongos , Antagonistas de Entorpecentes/farmacologia , Dor Nociceptiva/induzido quimicamente , Dor Nociceptiva/metabolismo , Dor Nociceptiva/psicologia , Receptor CB1 de Canabinoide/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais
5.
Inflammopharmacology ; 27(2): 397-408, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372359

RESUMO

BACKGROUND: Annona crassiflora Mart., popularly known as "Araticum", is a native tree of the Brazilian Cerrado used in folk medicine for treatment of pain and inflammatory diseases. We proposed to analyze analgesic and anti-inflammatory properties of the filtrate (F1) and the precipitate (F2) of the hydroalcoholic fraction from the leaves of Annona crassiflora Mart. in mice. MATERIALS AND METHODS: Swiss mice were submitted to formalin-induced nociception test and tail-flick reflex test, to assess antinociceptive properties, and to the rota-rod test, for motor performance analyses. To evaluate anti-inflammatory properties, F1 and F2 were orally administered 1 h prior to the intrathoracic injection of carrageenan, zymosan, LPS, CXCL8, or vehicle in Balb/c mice and neutrophil infiltration was evaluated 4 h after injection. RESULTS: F1 and F2 reduced the licking time in the second phase of formalin-induced nociception test, but only F2 showed a dose-dependent response. Neither F1 nor F2 reduced the latency time in the tail-flick reflex test. In addition, motor performance alteration was not observed in F1- or F2-treated mice. F2 treatment significantly inhibited the neutrophilia induced by carrageenan, LPS, or CXCL8, but not zymosan. CONCLUSIONS: The experimental data demonstrated that hydroalcoholic fractions of Annona crassiflora Mart. leaves have remarkable anti-inflammatory and antinociceptive activities.


Assuntos
Analgésicos/farmacologia , Annona/química , Anti-Inflamatórios/farmacologia , Medição da Dor/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Animais , Carragenina/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C
6.
Planta Med ; 83(3-04): 261-267, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27574895

RESUMO

Peltatoside is a natural compound isolated from leaves of Annona crassiflora Mart., a plant widely used in folk medicine. This substance is an analogue of quercetin, a flavonoid extensively studied because of its diverse biological activities, including analgesic effects. Besides, a previous study suggested, by computer structure analyses, a possible quercetin-CB1 cannabinoid receptor interaction. Thus, the aim of this work was to assess the antinociceptive effect of peltatoside and analyze the cannabinoid system involvement in this action. The mouse paw pressure test was used and hyperalgesia was induced by intraplantar injection of carrageenan (200 µg/paw). All used drugs were administered by intraplantar administration in Swiss male mice (n = 6). Peltatoside (100 µg/paw) elicited a local inhibition of hyperalgesia. The peripheral antinociceptive action of peltatoside was antagonized by the CB1 cannabinoid antagonist AM251 (160 µg/paw), but not by CB2 cannabinoid antagonist AM630 (100 µg/paw). In order to assess the role of endocannabinoids in this peripheral antinociceptive effect, we used (i) [5Z,8Z,11Z,14Z]-5,8,11,14-eicosatetraenyl-methyl ester phosphonofluoridic acid, an inhibitor of anandamide amidase; (ii) JZL184, an inhibitor for monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol; and (iii) VDM11, an endocannabinoid reuptake inhibitor. MAFP, JZL184, and VDM11 did not induce antinociception, respectively, at the doses 0.5, 3.8, and 2.5 µg/paw, however, these three drugs were able to potentiate the peripheral antinociceptive effect of peltatoside at an intermediary dose (50 µg/paw). Our results suggest that this natural substance is capable of inducing analgesia through the activation of peripheral CB1 receptors, involving endocannabinoids in this process.


Assuntos
Analgésicos/farmacologia , Canabinoides/metabolismo , Glicosídeos/farmacologia , Quercetina/análogos & derivados , Amidoidrolases/metabolismo , Analgésicos/química , Analgésicos/isolamento & purificação , Animais , Annona/química , Benzodioxóis/administração & dosagem , Benzodioxóis/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Carragenina/antagonistas & inibidores , Carragenina/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides/metabolismo , Glicosídeos/antagonistas & inibidores , Glicosídeos/química , Glicosídeos/isolamento & purificação , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Monoacilglicerol Lipases/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Piperidinas/administração & dosagem , Piperidinas/farmacologia , Extratos Vegetais/farmacologia , Pirazóis/farmacologia , Quercetina/antagonistas & inibidores , Quercetina/química , Quercetina/isolamento & purificação , Quercetina/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo
7.
Planta Med ; 82(1-2): 106-12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26460671

RESUMO

Cafestol and kahweol are diterpenes found only in the non-saponified lipid fraction of coffee. They are released during boiling and retained in the filtration process. Previous studies have shown peripheral antinociception induced by endogenous opioid peptides released by these diterpenes. Considering that the activation of the opioid system leads to a noradrenaline release, the aim of this study was to verify the participation of the noradrenergic system in the peripheral antinociception induced by cafestol and kahweol. Hyperalgesia was induced by an intraplantar injection of prostaglandin E2 (2 µg). Cafestol or kahweol (80 µg/paw) were administered locally into the right hindpaw alone, and after the agents α 2-adrenoceptor antagonist yohimbine (5, 10 and 20 µg/paw), α 2 A-adrenoceptor antagonist BRL 44 408 (40 µg/paw), α 2B-adrenoceptor antagonist imiloxan (40 µg/paw), α 2 C-adrenoceptor antagonist rauwolscine (10, 15 and 20 µg/paw), α 2D-adrenoceptor antagonist RX 821 002 (40 µg/paw), α 1-adrenoceptor antagonist prazosin (0.5, 1 and 2 µg/paw), or ß-adrenoceptor antagonist propranolol (150, 300 and 600 ng/paw), respectively. Noradrenaline reuptake inhibitor reboxetine (30 µg/paw) was administered prior to cafestol or kahweol low dose (40 µg/paw) and guanetidine 3 days prior to the experiment (30 mg/kg, once a day), depleting the noradrenaline storage. Intraplantar injection of cafestol or kahweol (80 µg/paw) induced a peripheral antinociception against hyperalgesia induced by PGE2. This effect was reversed by intraplantar injections of yohimbine, rauwolscine, prazosin and propranolol. Reboxetine injection intensified the antinociceptive effect of cafestol or kahweol low-dose, and guanethidine reversed almost 70 % of the cafestol or kahweol-induced peripheral antinociception. This study gives evidence that the noradrenergic system participates in cafestol and kahweol-induced peripheral antinociception with the release of endogenous noradrenaline.


Assuntos
Analgésicos/farmacologia , Café/química , Diterpenos/farmacologia , Receptores Adrenérgicos/efeitos dos fármacos , Animais , Diterpenos/química , Masculino , Estrutura Molecular , Ratos , Ratos Wistar , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos alfa 2/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo
8.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38920106

RESUMO

Noradrenaline (NA) and serotonin (5-HT) induce nociception and antinociception. This antagonistic effect can be explained by the dose and type of activated receptors. We investigated the existence of synergism between the noradrenergic and serotonergic systems during peripheral antinociception. The paw pressure test was performed in mice that had increased sensitivity by intraplantar injection of prostaglandin E2 (PGE2). Noradrenaline (80 ng) administered intraplantarly induced an antinociceptive effect, that was reversed by the administration of selective antagonists of serotoninergic receptors 5-HT1B isamoltan, 5-HT1D BRL15572, 5-HT2A ketanserin, 5-HT3 ondansetron, but not by selective receptor antagonist 5-HT7 SB-269970. The administration of escitalopram, a serotonin reuptake inhibitor, potentiated the antinociceptive effect at a submaximal dose of NA. These results, indicate the existence of synergism between the noradrenergic and serotonergic systems in peripheral antinociception in mice.


Assuntos
Norepinefrina , Receptores de Serotonina , Antagonistas da Serotonina , Serotonina , Animais , Camundongos , Norepinefrina/metabolismo , Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Masculino , Receptores de Serotonina/metabolismo , Dinoprostona/metabolismo , Citalopram/farmacologia , Nociceptividade/efeitos dos fármacos , Analgésicos/farmacologia , Ondansetron/farmacologia , Ketanserina/farmacologia , Dor/tratamento farmacológico , Dor/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
9.
Neurosci Lett ; 818: 137536, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898181

RESUMO

It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 µg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 µg) and AM630 (25, 50 and 100 µg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 µg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 µg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 µg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 µg) and by the selective inhibitor for the neuronal isoform LNPA (24 µg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 µg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 µg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.


Assuntos
Canabinoides , Camundongos , Animais , Canabinoides/metabolismo , Analgésicos/farmacologia , Serotonina/farmacologia , Bloqueadores dos Canais de Potássio , Receptores de Canabinoides , Trifosfato de Adenosina , Hiperalgesia/metabolismo
10.
J Neurosci Res ; 90(8): 1639-45, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22589236

RESUMO

Trigeminal neuralgia is considered one of the most painful conditions, and pharmacological treatment can be as debilitating as the pathology itself. The aim of this work was to evaluate the effectiveness of pulsed therapeutic ultrasound (TU) on an experimental rat model of trigeminal neuropathic nociception (chronic constriction injury-infraorbital nerve; CCI-ION). To evaluate facial thermonociception, an apparatus that measured the reaction time for head withdrawal was constructed. After surgery, a gradual reduction in reaction time was observed until day 15 post-CCI, when the values became constant. Three ipsilateral applications of TU to post-CCI rats promoted an increase in latency time. This antinociceptive effect was evident even after the first TU application, reaching maximal values at 24 hr. The magnitude of this effect was proportional to ultrasonic wave intensity (0.3 and 0.4 W/cm(2)). Posttreatment with naltrexone (5 mg/kg, s.c.) completely blocked the hypoalgesic effect of TU. Pretreatment with an opioid antagonist was unable to block the antinociceptive effect during the first 8 hr, suggesting that opioids are involved only in the latter phase of the TU effects. Myeloperoxidase (MPO) levels in the infraorbital nerve were not increased by TU use, indicating that TU causes no injury or is at least insufficient to induce neutrophil migration. In conclusion, TU is an effective resource in a model of trigeminal neuropathic pain, with a mechanism involving opioid receptor activation, confirming its potential usefulness in the treatment of trigeminal neuralgia.


Assuntos
Hiperalgesia/diagnóstico por imagem , Neuralgia do Trigêmeo/diagnóstico por imagem , Animais , Movimento Celular/fisiologia , Modelos Animais de Doenças , Masculino , Neutrófilos/diagnóstico por imagem , Nociceptividade/fisiologia , Limiar da Dor , Ratos , Ratos Wistar , Ultrassonografia
11.
J Pharmacol Sci ; 118(2): 156-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22343363

RESUMO

Although the antinociceptive effects of N-palmitoyl-ethanolamine (PEA) were first characterized nearly 50 years ago, the identity of the mechanism that mediates these actions has not been elucidated. The present study investigated the contribution of K(+) channels on peripheral antinociception induced by the CB(2) agonist PEA. Nociceptive thresholds to mechanical paw stimulation of Wistar rats treated with intraplantar prostaglandin E(2) to induce hyperalgesia were measured, and other agents were also given by local injection. PEA (5, 10, and 20 µg/paw) elicited a local peripheral antinociceptive effect. This effect was antagonized by glibenclamide, a selective blocker of ATP-sensitive K(+) channels (20, 40, and 80 µg/paw). In addition, neither the voltage-dependent K(+) channel-specific blocker tetraethylammonium (30 µg/paw) nor the small and large conductance blockers of Ca(2+)-activated K(+) channels, dequalinium (50 µg/paw) and paxilline (20 µg/paw), respectively, were able to block the local antinociceptive effect of PEA. These results indicate that the activation of ATP-sensitive K(+) channels could be the mechanism that induces peripheral antinociception by PEA and that voltage-dependent K(+) channels and small and large conductance Ca(2+)-activated K(+) channels do not appear to be involved in this mechanism.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Canais KATP/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Amidas , Analgésicos/administração & dosagem , Animais , Dequalínio/farmacologia , Dinoprostona/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Endocanabinoides , Etanolaminas , Glibureto/administração & dosagem , Glibureto/farmacologia , Hiperalgesia/fisiopatologia , Indóis/farmacologia , Canais KATP/metabolismo , Masculino , Ácidos Palmíticos/administração & dosagem , Ratos , Ratos Wistar
12.
Life Sci ; 293: 120279, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032552

RESUMO

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Assuntos
Analgésicos/uso terapêutico , Agonistas de Receptores de Canabinoides/uso terapêutico , Curcumina/uso terapêutico , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Receptores Opioides/metabolismo , Analgésicos/farmacologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Agonistas de Receptores de Canabinoides/farmacologia , Carragenina/toxicidade , Cinamatos/farmacologia , Curcumina/farmacologia , Relação Dose-Resposta a Droga , Endocanabinoides/farmacologia , Endocanabinoides/uso terapêutico , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Derivados da Morfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/uso terapêutico
13.
Biochem Pharmacol ; 198: 114965, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182520

RESUMO

BACKGROUND: Bradykinin (BK) is an endogenous peptide involved in vascular permeability and inflammation. It has opposite effects (inducing hyperalgesia or antinociception) when administered directly in the central nervous system. The aim of this study was to evaluate whether BK may also present this dual effect when injected peripherally in a PGE2-induced nociceptive pain model, as well as to investigate the possible mechanisms of action involved in this event in mice. METHODS: Male Swiss and C57BL/6 knockout mice for B1 or B2 bradykinin receptors were submitted to a mechanical paw pressure test and hyperalgesia was induced by intraplantar prostaglandin E2 (2 µg/paw) injection. RESULTS: Bradykinin (20, 40 and 80 ng/paw) produced dose-dependent peripheral antinociception against PGE2-induced hyperalgesia. This effect was antagonized by bradyzide (8, 16 and 32 µg/paw), naloxone (12.5, 25 and 50 µg/paw), nor-binaltorphimine (50, 100 and 200 µg/paw) and AM251 (20, 40 and 80 µg/paw). Bestatin (400 µg/paw), MAFP (0.5 µg/paw) and VDM11 (2.5 µg/paw) potentiated the antinociception of a lower 20 ng BK dose. The knockout of B1 or B2 bradykinin receptors partially abolished the antinociceptive action of BK (80 ng/paw), bremazocine (1 µg/paw) and anandamide (40 ng/paw) when compared with wild-type animals, which show complete antinociception with the same dose of each drug. CONCLUSION: The present study is the first to demonstrate BK-induced antinociception in peripheral tissues against PGE2-induced nociception in mice and the involvement of κ-opioid and CB1 cannabinoid receptors in this effect.


Assuntos
Bradicinina , Hiperalgesia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Bradicinina/farmacologia , Dinoprostona , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Bradicinina
14.
Pharmacol Rep ; 72(1): 96-103, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32016857

RESUMO

BACKGROUND: Xylazine is an α2 adrenoceptor agonist that is extensively used in veterinary medicine and animal experimentation procedures to produce analgesia, sedation and muscle relaxation without causing general anesthesia. Considering the lack of knowledge of the mechanisms involved in peripheral antinociception induced by xylazine and the potential interactions between the adrenergic and endocannabinoid systems, the present study investigated the contribution of the latter system in the mechanism of xylazine. METHODS: The rat paw pressure test, in which hyperalgesia was induced by the intraplantar injection of prostaglandin E2, was performed. RESULTS: Xylazine administered via an intraplantar injection (25, 50 and 100 µg) induced a peripheral antinociceptive effect against prostaglandin E2 (2 µg)-induced hyperalgesia. This effect was blocked by treatment with the selective CB1 cannabinoid antagonist AM251 (20, 40 and 80 µg) but not by the selective CB2 cannabinoid antagonist AM630 (100 µg). The anandamide reuptake inhibitor VDM11 (2.5 µg) intensified the peripheral antinociceptive effect of a submaximal dose of xylazine (25 µg), and the inhibitor of endocannabinoid enzymatic hydrolysis, MAFP (0.5 µg), showed a tendency towards this same effect. In addition, liquid-chromatography mass spectrometric analysis indicated that xylazine (100 µg) treatment was associated with an increase in anandamide levels in the rat paws treated with PGE2. CONCLUSIONS: The present results provides evidence that the peripheral antinociceptive effect of the α2 adrenoceptor agonist xylazine probably results from anandamide release and subsequent CB1 cannabinoid receptor activation.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Hiperalgesia/tratamento farmacológico , Alcamidas Poli-Insaturadas/metabolismo , Xilazina/farmacologia , Agonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Analgésicos/administração & dosagem , Analgésicos/farmacologia , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Xilazina/administração & dosagem
15.
J Pharmacol Sci ; 111(4): 323-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20019444

RESUMO

Xylazine is an alpha(2)-adrenergic agonist extensively used in veterinary medicine and animal experimentation for producing antinociception, sedation, and muscle relaxation. The nitric oxide (NO) / cGMP / ATP-sensitive K(+) (K(ATP)) channel pathway has been proposed as the action mechanism of peripheral antinociception of several groups of drugs, including opioids and nonsteroidal analgesics. Considering the lack of knowledge regarding the mechanisms involved in xylazine effects, the present study investigated the contribution of K(+) channels on peripheral antinociception induced by xylazine using the rat paw pressure test, in which hyperalgesia was induced by intraplantar injection of prostaglandin E(2). Xylazine administered into the right hind paw elicited a local antinociceptive effect, since only much higher doses produced a systemic effect in the contralateral paw. The peripheral antinociceptive effect induced by xylazine was antagonized by glibenclamide, a specific blocker of K(ATP) channels. In another experiment, tetraethylammonium, a voltage-dependent K(+)-channel blocker, and paxilline and dequalinium, which are selective blockers for the large- and small-conductance Ca(2+)-activated K(+) channels, respectively, were ineffective at blocking xylazine antinociception. These results provide evidence that the peripheral antinociceptive effect of xylazine probably results from K(ATP)-channel activation, while the voltage-dependent K(+) channels, small- and large-conductance Ca(2+)-activated K(+) channels, appear not to be involved in this mechanism.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Analgésicos/farmacologia , Hiperalgesia/tratamento farmacológico , Canais KATP/antagonistas & inibidores , Xilazina/farmacologia , Agonistas alfa-Adrenérgicos/administração & dosagem , Analgésicos/administração & dosagem , Animais , Dinoprostona , Relação Dose-Resposta a Droga , Interações Medicamentosas , Hiperalgesia/induzido quimicamente , Injeções Subcutâneas , Masculino , Modelos Animais , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Xilazina/administração & dosagem , Xilazina/antagonistas & inibidores
16.
Neurosci Lett ; 699: 140-144, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30716423

RESUMO

The participation of endocannabinoids in central and peripheral antinociception induced by several compounds has been shown by our group. In this study, we investigated the effect of endocannabinoids on the central antinociception induced by ketamine. The nociceptive threshold for thermal stimulation was measured using the tail-flick test in Swiss mice. The drugs were administered intracerebroventricularly. Probabilities less than 5% (p < 0.05) were considered to be statistically significant (Two-way ANOVA/Bonferroni's test). The CB1-selective cannabinoid receptor antagonist AM251 (2 and 4 µg) completely reversed the central antinociception induced by ketamine (4 µg) in a dose-dependent manner. In contrast, the CB2-selective cannabinoid receptor antagonist AM630 (2 and 4 µg) did not antagonize this effect. Additionally, the administration of the anandamide amidase inhibitor MAFP (0.2 µg) and anandamide uptake inhibitor VDM11 (4 µg) significantly enhanced the antinociception induced by a low dose of ketamine (2 µg). It was concluded that central antinociception induced by ketamine involves the activation of CB1 cannabinoid receptors. Mobilization of cannabinoids might be required for the activation of those receptors, since inhibitors of the endogenous cannabinoids potentiate the effect of Ketamine.


Assuntos
Analgésicos/farmacologia , Canabinoides/metabolismo , Ketamina/farmacologia , Receptor CB1 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Indóis/farmacologia , Infusões Intraventriculares , Ketamina/administração & dosagem , Ketamina/antagonistas & inibidores , Masculino , Camundongos , Organofosfonatos/farmacologia , Medição da Dor/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores
17.
Eur J Pharmacol ; 865: 172808, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31738939

RESUMO

Ketamine is a drug largely used in clinical practice as an anesthetic and it can also be used as an analgesic to manage chronic pain symptoms. Despite its interactions with several other signaling systems such as cholinergic, serotoninergic and adrenergic, it is accepted that NMDA receptor antagonism is the main mechanism of action of this drug. In this study we investigated the actions of endogenous opioids in the mechanism of peripheral analgesia induced by ketamine. The nociceptive threshold for mechanical stimuli was measured in Swiss mice using the Randall and Selitto test. The drugs used in this study were administered via intraplantar injection. Our results demonstrated that non selective opioid receptor antagonism (naloxone), selective µ- and δ-opioid receptors antagonism (clocinamox and naltrindole, respectively) but not κ-opioid receptor antagonism (nor-binaltorphimine NORBNI) antagonized ketamine-induced peripheral antinociception in a dose-dependent manner. In addition, administration of aminopeptidase inhibitor bestatin significantly potentiated ketamine-induced peripheral antinociception. Ketamine injection in the right hind paw induced ß-endorphine synthesis in the epithelial tissue of the hindpaw. Together these results indicate a role for µ- and δ-opioid receptors and for the endogenous opioid ß-endorphine increased synthesis in ketamine-induced peripheral analgesia mechanism of action.


Assuntos
Analgésicos/uso terapêutico , Ketamina/uso terapêutico , Dor/tratamento farmacológico , Receptores Opioides delta , Receptores Opioides mu , Analgésicos/farmacologia , Animais , Cinamatos/farmacologia , Dinoprostona , Ketamina/farmacologia , Masculino , Camundongos , Derivados da Morfina/farmacologia , Naloxona/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/induzido quimicamente , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores
18.
Artigo em Inglês | MEDLINE | ID: mdl-31467512

RESUMO

BACKGROUND: The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated. METHODS: The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2). RESULTS: PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 µg of PnTx4(5-5) injection in rat paw. CONCLUSION: The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.

19.
Brain Res ; 1188: 54-60, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-18062942

RESUMO

The aim of the present study was to test the hypothesis that electroacupuncture (EA) at acupoint St36 induces antinociception by activation of the L-arg/NO/cGMP pathway. Nociception was produced by thermal stimuli applied to the face of Wistar rats and latency was measured by face withdrawal. Electric stimulation of acupoint St36 for 20 min induced antinociception in this model, which was maintained for 150 min. For comparison, a so-called dry needle group (DN) was used, which received needling at the same point without stimulation. The antinociception obtained by stimulation of acupoint St36 was only achieved when high frequency (100 Hz) was used, whereas low frequencies (5 and 30 Hz) were not capable of achieving this effect. Subcutaneous administration of both inhibitors of NO synthase (N-nitro-L-arginine) and guanylyl cyclase (ODQ) and intraperitoneal administration of specific antagonists of neuronal NO synthase (L-NNA) and inductible NO synthase (aminoguanidine) antagonized the antinociception induced by St36 stimulation. The results of this paper suggest that stimulation of acupoint St36 at high frequency induces antinociception, which seems to be related to L-arg/NO/cGMP pathway activation.


Assuntos
Pontos de Acupuntura , Eletroacupuntura/métodos , Dor Facial/metabolismo , Dor Facial/terapia , Óxido Nítrico/metabolismo , Nociceptores/metabolismo , Animais , GMP Cíclico/metabolismo , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Dor Facial/fisiopatologia , Guanilato Ciclase/antagonistas & inibidores , Guanilato Ciclase/metabolismo , Temperatura Alta/efeitos adversos , Injeções Intraperitoneais , Injeções Subcutâneas , Masculino , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Nociceptores/fisiopatologia , Medição da Dor , Limiar da Dor/fisiologia , Ratos , Ratos Wistar , Reflexo/fisiologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
20.
Biomed Pharmacother ; 97: 1434-1437, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156533

RESUMO

PURPOSE: Studies conducted since 1969 have shown that the release of serotonin (5-HT) in the dorsal horn of the spinal cord contributes to opioid analgesia. In the present study, the participation of the opioidergic system in antinociceptive effect serotonin at the peripheral level was examined. METHODS: The paw pressure test was used with mice (Swiss, males from 35 g) which had increased pain sensitivity by intraplantar injection of PGE2 (2 µg). Serotonin (250 ng), administered locally to the right paw of animals, produces antinociception in this model. RESULTS: The selective antagonists for mu, delta and kappa opioid receptors, clocinnamox clocinnamox (40 µg), naltrindole (60 µg) and nor-binaltorfimina (200 µg), respectively, inhibited the antinociceptive effect induced by serotonin. Additionally, bestatin (400 µg), an inhibitor of enkephalinases that degrade peptides opioids, enhanced the antinociceptive effect induced by serotonin (low dose of 62.5 ng). CONCLUSIONS: These results suggest that serotonin possibly induce peripheral antinociception through the release of endogenous opioid peptides, possible from immune cells or keratinocytes.


Assuntos
Analgésicos/farmacologia , Dor/tratamento farmacológico , Receptores Opioides/efeitos dos fármacos , Serotonina/farmacologia , Analgésicos/administração & dosagem , Animais , Cinamatos/farmacologia , Dinoprostona/administração & dosagem , Modelos Animais de Doenças , Masculino , Camundongos , Derivados da Morfina/farmacologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Peptídeos Opioides/metabolismo , Dor/patologia , Receptores Opioides/metabolismo , Serotonina/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA