Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Parasitol Res ; 121(4): 1199-1206, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35006317

RESUMO

The filarial nematode Onchocerca volvulus causes onchocerciasis (river blindness), a neglected tropical disease affecting 21 million people, mostly in Sub-Saharan Africa. Targeting the endosymbiont Wolbachia with antibiotics leads to permanent sterilization and killing of adult worms. The gold standard to assess Wolbachia depletion is the histological examination of adult worms in nodules beginning at 6 months post-treatment. However, nodules can only be used once, limiting the time points to monitor Wolbachia depletion. A diagnostic to longitudinally monitor Wolbachia depletion from microfilariae (MF) at more frequent intervals < 6 months post-treatment would accelerate clinical trials of antiwolbachials. We developed a TaqMan qPCR amplifying the single-copy gene wOvftsZ to quantify Wolbachia from as few as one MF that had migrated from skin biopsies and compared quantification using circular and linearized plasmids or synthetic dsDNA (gBlock®). qPCR for MF from the rodent nematode Litomosoides sigmodontis was used to support the reproducibility and validate the principle. The qPCR using as few as 2 MF from O. volvulus and L. sigmodontis reproducibly quantified Wolbachia. Use of a linearized plasmid standard or synthesized dsDNA resulted in numbers of Wolbachia/MF congruent with biologically plausible estimates in O. volvulus and L. sigmodontis MF. The qPCR assay yielded a median of 48.8 (range 1.5-280.5) Wolbachia/O. volvulus MF. The qPCR is a sensitive tool for quantifying Wolbachia in a few MF from skin biopsies and allows for establishing the qPCR as a surrogate parameter for monitoring Wolbachia depletion in adult worms of new antiwolbachial candidates.


Assuntos
Filarioidea , Onchocerca volvulus , Wolbachia , Animais , Humanos , Microfilárias , Onchocerca , Onchocerca volvulus/genética , Reprodutibilidade dos Testes , Wolbachia/efeitos dos fármacos , Wolbachia/genética
2.
Clin Infect Dis ; 71(4): 933-943, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31536624

RESUMO

BACKGROUND: Improved treatment for onchocerciasis is needed to accelerate onchocerciasis elimination in Africa. Aiming to better exploit registered drugs, this study was undertaken to determine whether annual or semiannual treatment with ivermectin (IVM; 200 µg/kg) plus albendazole (ALB; 800 mg single dose) is superior to IVM alone. METHODS: This trial was performed in Ghana and included 272 participants with microfilariae (MF), who were randomly assigned to 4 treatment arms: (1) IVM annually at 0, 12, and 24 months; (2) IVM semiannually at 0, 6, 12, 18, and 24 months; (3) IVM+ALB annually; or (4) IVM+ALB semiannually. Microfiladermia was determined pretreatment and at 6, 18, and 36 months. The primary outcome was the proportion of fertile and viable female worms in onchocercomata excised at 36 months. RESULTS: Posttreatment nodule histology showed that 15/135 (11.1%), 22/155 (14.2%), 35/154 (22.7%), and 20/125 (16.0%) living female worms had normal embryogenesis in the IVM annual, IVM semiannual, IVM+ALB annual, and IVM+ALB semiannual groups, respectively (P = .1229). Proportions of dead worms also did not differ between the 4 groups (P = .9198). Proportions of patients without MF at 36 months (1 year after the last treatment) were 35/56 (63%) after annual IVM, 42/59 (71%) after semiannual IVM, 39/64 (61%) after annual IVM+ALB, and 43/53 (81%) after semiannual IVM+ALB. CONCLUSIONS: The combination treatment of IVM plus ALB was no better than IVM alone for sterilizing, killing adult worms, or achieving sustained MF clearance. However, semiannual treatment was superior to annual treatment for achieving sustained clearance of Onchocerca volvulus MF from the skin (P = .024). CLINICAL TRIALS REGISTRATION: ISRCTN50035143.


Assuntos
Onchocerca volvulus , Oncocercose , Albendazol/uso terapêutico , Animais , Feminino , Gana/epidemiologia , Humanos , Ivermectina , Oncocercose/tratamento farmacológico
3.
Clin Infect Dis ; 61(4): 517-26, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25948064

RESUMO

BACKGROUND: Ivermectin (IVM) has been the drug of choice for the treatment of onchocerciasis. However, there have been reports of persistent microfilaridermia in individuals from an endemic area in Ghana after many rounds of IVM, raising concerns of suboptimal response or even the emergence of drug resistance. Because it is considered risky to continue relying only on IVM to combat this phenomenon, we assessed the effect of targeting the Onchocerca volvulus Wolbachia endosymbionts with doxycycline for these individuals with suboptimal response. METHODS: One hundred sixty-seven patients, most of them with multiple rounds of IVM, were recruited in areas with IVM suboptimal response and treated with 100 mg/day doxycycline for 6 weeks. Three and 12 months after doxycycline treatment, patients took part in standard IVM treatment. RESULTS: At 20 months after treatment, 80% of living female worms from the placebo group were Wolbachia positive, whereas only 5.1% in the doxycycline-treated group contained bacteria. Consistent with interruption of embryogenesis, none of the nodules removed from doxycycline-treated patients contained microfilariae, and 97% of those patients were without microfilaridermia, in contrast to placebo patients who remained at pretreatment levels (P < .001). Moreover, a significantly enhanced number of dead worms were observed after doxycycline. CONCLUSIONS: Targeting the Wolbachia in O. volvulus is effective in clearing microfilariae in the skin of onchocerciasis patients with persistent microfilaridermia and in enhanced killing of adult worms after repeated standard IVM treatment. Strategies can now be developed that include doxycycline to control onchocerciasis in areas where infections persist despite the frequent use of IVM. CLINICAL TRIALS REGISTRATION: ISRCTN 66649839.


Assuntos
Antibacterianos/administração & dosagem , Doxiciclina/administração & dosagem , Onchocerca volvulus/efeitos dos fármacos , Onchocerca volvulus/fisiologia , Oncocercose/tratamento farmacológico , Wolbachia/efeitos dos fármacos , Adolescente , Adulto , Animais , Método Duplo-Cego , Feminino , Filaricidas/administração & dosagem , Gana , Humanos , Ivermectina/administração & dosagem , Masculino , Pessoa de Meia-Idade , Onchocerca volvulus/microbiologia , Placebos/administração & dosagem , Resultado do Tratamento , Adulto Jovem
4.
J Immunol ; 186(8): 4845-52, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21398605

RESUMO

Filarial parasites have to trespass many barriers to successfully settle within their mammalian host, which is equipped with mechanical borders and complex weaponry of an evolved immune system. However, little is known about mechanisms of early local events in filarial infections. In this study, bone marrow-derived dendritic cells not only upregulated activation markers CD40 and CD80 upon in vitro stimulation with filarial extracts, but also secreted CCL17, a chemokine known to be produced upon microbial challenge. Mice deficient for CCL17 had an up to 4-fold higher worm burden compared with controls by day 10 of infection with the murine filaria Litomosoides sigmodontis. Also, numbers of mast cells (MCs) invading the skin and degranulation were significantly increased, which was associated with enhanced vascular permeability and larval establishment. This phenotype was reverted by inhibition of MC degranulation with disodium cromoglycate or by blockade of histamine. In addition, we showed that CCL17-mediated vascular permeability was dependent on the presence of Wolbachia endosymbionts and TLR2. Our findings reveal that CCL17 controls filarial larval entry by limiting MC-dependent vascular permeability.


Assuntos
Quimiocina CCL17/imunologia , Filariose/imunologia , Filarioidea/imunologia , Mastócitos/imunologia , Animais , Antígenos de Helmintos/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Permeabilidade Capilar/imunologia , Degranulação Celular/imunologia , Células Cultivadas , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Filariose/genética , Filariose/parasitologia , Filarioidea/microbiologia , Filarioidea/fisiologia , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Parasita/imunologia , Larva/imunologia , Larva/microbiologia , Larva/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Linfonodos/imunologia , Linfonodos/metabolismo , Mastócitos/fisiologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout , Microscopia Confocal , Pele/imunologia , Pele/metabolismo , Fatores de Tempo , Wolbachia/imunologia
5.
Front Med (Lausanne) ; 10: 1099926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817770

RESUMO

Background: Novel drugs or drug combinations that kill or permanently sterilize adult Onchocerca volvulus worms would be very helpful for treatment and elimination of onchocerciasis. In absence of a reliable biomarker for viable adult worms, histopathological assessment of worms within onchocercal nodules is a standard method to determine macrofilaricidal activity. The goal of the present study was to determine the agreement between two independent experts in the analysis of nodule sections and to assess the value of digital imaging as a means of standardizing the analysis. Material and methods: Two expert microscopists independently assessed 605 nodules by direct microscopy. At least two sections with two different stains hematoxylin & eosin (H&E, APR immunostain) of paraffin-embedded, ethanol-fixed whole-nodule cross-sections were analyzed. After variables were identified prone to observer discrepancies, we performed a second study to compare consolidated results for 100 nodules obtained by the two readers by microscopy and by analysis of scanned, high resolution digital images (20x magnification). The last data set analyzed was a quality panel of 100 nodules that has been previously examined by microscopy, and included additional immunostains for Wolbachia endobacteria. These slides were digitalized, read by the two assessors and results were compared with original microscopy results. Results: The degree of agreement between assessors varied for different parameters. Agreement for female worm counts in nodules was approximately 80%, while agreement regarding female worm viability was 98%. There were no major differences observed between results obtained by microscopy or digital images. Good agreement for important parameters was also observed for the nodules of the quality panel. Conclusion: Nodule analysis by experienced microscopists was reproducible with regard to important parameters such as identification of living female worms or detection of normal embryogenesis. Assessments varied more for other parameters, and we recommend continued use of two independent readers for detailed analyzes. Analysis of scanned images provided similar results to direct microscopy. This facilitates training and comparison of nodule findings by readers in different locations. Analysis of high quality digital images that can be viewed remotely should improve the quality and availability of nodule assessments that are primary endpoints for onchocerciasis clinical trials.

6.
PLoS Negl Trop Dis ; 17(5): e0011365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205721

RESUMO

BACKGROUND: Onchocerciasis ("river blindness") has been targeted for elimination. New treatments that kill or permanently sterilize female worms could accelerate this process. Prior studies have shown that triple drug treatment with ivermectin plus diethylcarbamazine and albendazole (IDA) leads to prolonged clearance of microfilaremia in persons with lymphatic filariasis. We now report results from a randomized clinical trial that compared the tolerability and efficacy of IDA vs. a comparator treatment (ivermectin plus albendazole, IA) in persons with onchocerciasis. METHODS AND FINDINGS: The study was performed in the Volta region of Ghana. Persons with microfiladermia and palpable subcutaneous nodules were pre-treated with two oral doses of ivermectin (150 µg/kg) separated by at least 6 months prior to treatment with either a single oral dose of ivermectin 150 µg/kg plus albendazole 400 mg (IA), a single oral dose of IDA (IDA1, IA plus diethylcarbamazine (DEC. 6 mg/kg) or three consecutive daily doses of IDA (IDA3). These treatments were tolerated equally well. While adverse events were common (approximately 30% overall), no severe or serious treatment-emergent adverse events were observed. Skin microfilariae were absent or present with very low densities after all three treatments through 18 months, at which time nodules were excised for histological assessment. Nodule histology was evaluated by two independent assessors who were masked regarding participant infection status or treatment assignment. Significantly lower percentages of female worms were alive and fertile in nodules recovered from study participants after IDA1 (40/261, 15.3%) and IDA3 (34/281, 12.1%) than after IA (41/180, 22.8%). This corresponds to a 40% reduction in the percentage of female worms that were alive and fertile after IDA treatments relative to results observed after the IA comparator treatment (P = 0.004). Percentages of female worms that were alive (a secondary outcome of the study) were also lower after IDA treatments (301/574, 52.4%) than after IA (127/198, 64.1%) (P = 0.004). Importantly, some comparisons (including the reduced % of fertile female worms after IDA1 vs IA treatment, which was the primary endpoint for the study) were not statistically significant when results were adjusted for intraclass correlation of worm fertility and viability for worms recovered from individual study participants. CONCLUSIONS: Results from this pilot study suggest that IDA was well tolerated after ivermectin pretreatment. They also suggest that IDA was more effective than the comparator treatment IA for killing or sterilizing female O. volvulus worms. No other short-course oral treatment for onchocerciasis has been demonstrated to have macrofilaricidal activity. However, this first study was too small to provide conclusive results. Therefore, additional studies will be needed to confirm these promising findings. TRIAL REGISTRATION: The study is registered at Cinicaltrials.gov under the number NCT04188301.


Assuntos
Filariose Linfática , Filaricidas , Oncocercose , Humanos , Feminino , Ivermectina/uso terapêutico , Dietilcarbamazina/efeitos adversos , Oncocercose/tratamento farmacológico , Albendazol , Projetos Piloto , Quimioterapia Combinada , Filariose Linfática/tratamento farmacológico , Filaricidas/efeitos adversos
7.
PLoS Negl Trop Dis ; 14(7): e0008427, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32628671

RESUMO

A major impediment to eliminate lymphatic filariasis and onchocerciasis is the lack of effective short-course macrofilaricidal drugs or regimens that are proven to be safe for both infections. In this study we tested oxfendazole, an anthelmintic shown to be well tolerated in phase 1 clinical trials. In vitro, oxfendazole exhibited modest to marginal motility inhibition of adult worms of Onchocerca gutturosa, pre-adult worms of Onchocerca volvulus and Onchocerca lienalis microfilariae. In vivo, five days of oral treatments provided sterile cure with up to 100% macrofilaricidal efficacy in the murine Litomosoides sigmodontis model of filariasis. In addition, 10 days of oral treatments with oxfendazole inhibited filarial embryogenesis in patent L. sigmodontis-infected jirds and subsequently led to a protracted but complete clearance of microfilaremia. The macrofilaricidal effect observed in vivo was selective, as treatment with oxfendazole of microfilariae-injected naïve mice was ineffective. Based on pharmacokinetic analysis, the driver of efficacy is the maintenance of a minimal efficacious concentration of approximately 100 ng/ml (based on subcutaneous treatment at 25 mg/kg in mice). From animal models, the human efficacious dose is predicted to range from 1.5 to 4.1 mg/kg. Such a dose has already been proven to be safe in phase 1 clinical trials. Oxfendazole therefore has potential to be efficacious for treatment of human filariasis without causing adverse reactions due to drug-induced microfilariae killing.


Assuntos
Benzimidazóis/farmacologia , Filariose Linfática/tratamento farmacológico , Filarioidea/efeitos dos fármacos , Animais , Anti-Helmínticos/uso terapêutico , Modelos Animais de Doenças , Filariose Linfática/parasitologia , Feminino , Filarioidea/embriologia , Gerbillinae/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Microfilárias/efeitos dos fármacos , Onchocerca/efeitos dos fármacos , Onchocerca volvulus/efeitos dos fármacos , Oncocercose/tratamento farmacológico
8.
PLoS Negl Trop Dis ; 13(1): e0006320, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30650105

RESUMO

Flubendazole (FBZ) is highly efficacious against filarial nematodes after parenteral administration and presents a promising macrofilaricidal drug candidate for the elimination of onchocerciasis and other filariae. In the present study the efficacy of a newly developed bioavailable amorphous solid dispersion (ASD) oral formulation of FBZ was investigated in the Litomosoides sigmodontis jird model. FBZ was administered to chronically infected, microfilariae-positive jirds by single (40mg/kg), repeated (2, 6 or 15mg/kg for 5 or 10 days) oral (OR) doses or single subcutaneous (SC) injections (2 or 10mg/kg). Jirds treated with 5 SC injections at 10mg/kg served as positive controls, with untreated animals used as negative controls. After OR doses, FBZ is rapidly absorbed and cleared and the exposures increased dose proportionally. SC administered FBZ was slowly released from the injection site and plasma levels remained constant up to necropsy eight weeks after treatment end. Increasing single SC doses caused less than dose-proportional exposures. At necropsy, all animals receiving 1x or 5x 10mg/kg SC FBZ had cleared all adult worms and the 1x 2mg/kg SC treatment had reduced the adult worm burden by 98%. 10x 15mg/kg OR FBZ reduced the adult worm burden by 95%, whereas 1x 40mg/kg and 5x 15mg/kg OR reduced the worm burden by 85 and 84%, respectively. Microfilaremia was completely cleared at necropsy in all animals of the SC treatment regimens, while all oral FBZ treatment regimens reduced the microfilaremia by >90% in a dose and duration dependent manner. In accordance, embryograms from female worms revealed a FBZ dose and duration dependent inhibition of embryogenesis. Histological analysis of the remaining female adult worms showed that FBZ had damaged the body wall, intestine and most prominently the uterus and uterine content. Results of this study demonstrate that single and repeated SC injections and repeated oral administrations of FBZ have an excellent macrofilaricidal effect.


Assuntos
Filariose/tratamento farmacológico , Filaricidas/farmacologia , Filaricidas/farmacocinética , Filarioidea/efeitos dos fármacos , Mebendazol/análogos & derivados , Administração Oral , Animais , Modelos Animais de Doenças , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Filariose/parasitologia , Filaricidas/administração & dosagem , Filarioidea/embriologia , Gerbillinae/parasitologia , Mebendazol/administração & dosagem , Mebendazol/farmacocinética , Mebendazol/farmacologia , Carga Parasitária
9.
Sci Transl Med ; 11(491)2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068442

RESUMO

Parasitic filarial nematodes cause debilitating infections in people in resource-limited countries. A clinically validated approach to eliminating worms uses a 4- to 6-week course of doxycycline that targets Wolbachia, a bacterial endosymbiont required for worm viability and reproduction. However, the prolonged length of therapy and contraindication in children and pregnant women have slowed adoption of this treatment. Here, we describe discovery and optimization of quinazolines CBR417 and CBR490 that, with a single dose, achieve >99% elimination of Wolbachia in the in vivo Litomosoides sigmodontis filarial infection model. The efficacious quinazoline series was identified by pairing a primary cell-based high-content imaging screen with an orthogonal ex vivo validation assay to rapidly quantify Wolbachia elimination in Brugia pahangi filarial ovaries. We screened 300,368 small molecules in the primary assay and identified 288 potent and selective hits. Of 134 primary hits tested, only 23.9% were active in the worm-based validation assay, 8 of which contained a quinazoline heterocycle core. Medicinal chemistry optimization generated quinazolines with excellent pharmacokinetic profiles in mice. Potent antiwolbachial activity was confirmed in L. sigmodontis, Brugia malayi, and Onchocerca ochengi in vivo preclinical models of filarial disease and in vitro selectivity against Loa loa (a safety concern in endemic areas). The favorable efficacy and in vitro safety profiles of CBR490 and CBR417 further support these as clinical candidates for treatment of filarial infections.


Assuntos
Antibacterianos/uso terapêutico , Descoberta de Drogas , Filariose/tratamento farmacológico , Filariose/parasitologia , Filarioidea/fisiologia , Quinazolinas/uso terapêutico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Filarioidea/efeitos dos fármacos , Filarioidea/microbiologia , Ensaios de Triagem em Larga Escala , Camundongos , Fenótipo , Quinazolinas/química , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Wolbachia/efeitos dos fármacos
10.
PLoS Negl Trop Dis ; 11(1): e0005156, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28056021

RESUMO

The search for new macrofilaricidal drugs against onchocerciasis that can be administered in shorter regimens than required for doxycycline (DOX, 200mg/d given for 4-6 weeks), identified minocycline (MIN) with superior efficacy to DOX. Further reduction in the treatment regimen may be achieved with co-administration with standard anti-filarial drugs. Therefore a randomized, open-label, pilot trial was carried out in an area in Ghana endemic for onchocerciasis, comprising 5 different regimens: the standard regimen DOX 200mg/d for 4 weeks (DOX 4w, N = 33), the experimental regimens MIN 200mg/d for 3 weeks (MIN 3w; N = 30), DOX 200mg/d for 3 weeks plus albendazole (ALB) 800mg/d for 3 days (DOX 3w + ALB 3d, N = 32), DOX 200mg/d for 3 weeks (DOX 3w, N = 31) and ALB 800mg for 3 days (ALB 3d, N = 30). Out of 158 randomized participants, 116 (74.4%) were present for the follow-up at 6 months of whom 99 participants (63.5%) followed the treatment per protocol and underwent surgery. Histological analysis of the adult worms in the extirpated nodules revealed absence of Wolbachia in 98.8% (DOX 4w), 81.4% (DOX 3w + ALB 3d), 72.7% (MIN 3w), 64.1% (DOX 3w) and 35.2% (ALB 3d) of the female worms. All 4 treatment regimens showed superiority to ALB 3d (p < 0.001, p < 0.001, p = 0.002, p = 0.008, respectively), which was confirmed by real-time PCR. Additionally, DOX 4w showed superiority to all other treatment arms. Furthermore DOX 4w and DOX 3w + ALB 3d showed a higher amount of female worms with degenerated embryogenesis compared to ALB 3d (p = 0.028, p = 0.042, respectively). These results confirm earlier studies that DOX 4w is sufficient for Wolbachia depletion and the desired parasitological effects. The data further suggest that there is an additive effect of ALB (3 days) on top of that of DOX alone, and that MIN shows a trend for stronger potency than DOX. These latter two results are preliminary and need confirmation in a fully randomized controlled phase 2 trial. TRIAL REGISTRATION: ClinicalTrials.gov #06010453.


Assuntos
Albendazol/administração & dosagem , Anti-Helmínticos/administração & dosagem , Doxiciclina/administração & dosagem , Minociclina/administração & dosagem , Oncocercose/tratamento farmacológico , Adolescente , Adulto , Animais , Quimioterapia Combinada , Feminino , Gana , Humanos , Masculino , Pessoa de Meia-Idade , Onchocerca volvulus/efeitos dos fármacos , Onchocerca volvulus/genética , Onchocerca volvulus/isolamento & purificação , Onchocerca volvulus/fisiologia , Oncocercose/parasitologia , Projetos Piloto , Resultado do Tratamento , Adulto Jovem
11.
PLoS Negl Trop Dis ; 6(3): e1558, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22413031

RESUMO

BACKGROUND: Lymphatic filariasis and onchocerciasis are two chronic diseases mediated by parasitic filarial worms causing long term disability and massive socioeconomic problems. Filariae are transmitted by blood-feeding mosquitoes that take up the first stage larvae from an infected host and deliver it after maturation into infective stage to a new host. After closure of vector control programs, disease control relies mainly on mass drug administration with drugs that are primarily effective against first stage larvae and require many years of annual/biannual administration. Therefore, there is an urgent need for alternative treatment ways, i.e. other effective drugs or vaccines. METHODOLOGY/PRINCIPAL FINDINGS: Using the Litomosoides sigmodontis murine model of filariasis we demonstrate that immunization with microfilariae together with the adjuvant alum prevents mice from developing high microfilaraemia after challenge infection. Immunization achieved 70% to 100% protection in the peripheral blood and in the pleural space and furthermore strongly reduced the microfilarial load in mice that remained microfilaraemic. Protection was associated with the impairment of intrauterine filarial embryogenesis and with local and systemic microfilarial-specific host IgG, as well as IFN-γ secretion by host cells from the site of infection. Furthermore immunization significantly reduced adult worm burden. CONCLUSIONS/SIGNIFICANCE: Our results present a tool to understand the immunological basis of vaccine induced protection in order to develop a microfilariae-based vaccine that reduces adult worm burden and prevents microfilaraemia, a powerful weapon to stop transmission of filariasis.


Assuntos
Filariose/prevenção & controle , Filarioidea/imunologia , Parasitemia/prevenção & controle , Vacinas/administração & dosagem , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Filarioidea/crescimento & desenvolvimento , Filarioidea/isolamento & purificação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Vacinação/métodos
12.
Microbes Infect ; 13(10): 828-36, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21609776

RESUMO

A severe complication of Plasmodium infection is cerebral malaria, a condition mainly attributed to overwhelming inflammatory immune reactions of the host. Murine models differing in susceptibility to experimental cerebral malaria (ECM) allow detailed studies of the host response. We show that ECM- resistant BALB/c mice were driven into interferon gamma- and IL-12-dependent ECM and subsequent death if they received CpG-oligonucleotides after Plasmodium berghei ANKA (PbA) infection. CpG application triggered production of pro-inflammatory cytokines systemically as well in spleen and brain and induced neuropathological symptoms, leading to increased mortality. Experiments with genetically deficient mice confirmed the role of IFN-γ and IL-12 during CpG-triggered immunopathology. Furthermore, the application of CpG and downstream production of pro-inflammatory cytokines contributed to the break down of the blood brain barrier visualized by Evan's Blue, comparable to PbA-infected C57BL/6 mice. Taken together, resistance of BALB/c mice towards ECM development could be altered through induction of pro-inflammatory cytokines by CpG. Therefore, approaches discussed earlier to induce pro-inflammatory immune reactions for malaria protection should be considered with caution.


Assuntos
Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Interleucina-12/imunologia , Malária Cerebral/imunologia , Malária Cerebral/patologia , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Adjuvantes Imunológicos/administração & dosagem , Animais , Barreira Hematoencefálica/microbiologia , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Azul Evans/farmacocinética , Feminino , Interferon gama/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Doenças dos Roedores/imunologia , Doenças dos Roedores/patologia , Baço/imunologia , Baço/patologia
13.
Microbes Infect ; 12(8-9): 635-42, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20420933

RESUMO

Filarial nematodes achieve long survival in their hosts due to their capacity to modulate immune responses. Therefore, immunomodulation by filarial nematodes may alter responses to concomitant infections such as malaria. Cerebral malaria (CM), a severe complication of Plasmodium falciparum infections, is triggered as a consequence of the immune response developed against malaria parasites. The question arises whether prior infection with helminth parasites is beneficial against CM. In the present work a murine model for subsequent has been used to assess this hypothesis. C57BL/6 mice were infected with the rodent filarial parasite Litomosoides sigmodontis and the murine model parasite for CM, Plasmodium berghei ANKA. Previously filaria-infected C57BL/6 mice showed significantly reduced CM rates. CD8(+) T cell recruitment to the brain, a hallmark for CM development, was reduced in protected mice. Furthermore, in contrast to P. berghei single-infected animals, filaria-infected mice had significantly higher levels of circulating IL-10. The requirement for IL-10 in CM protection was demonstrated by the lack of protection in IL-10 KO mice. This suggests that the anti-inflammatory IL-10 elicited by filarial nematodes is able to suppress the overwhelming inflammatory reaction otherwise triggered against malaria parasites in C57BL/6 mice, preventing full progress to CM.


Assuntos
Filarioidea/imunologia , Interleucina-10/imunologia , Malária Cerebral/imunologia , Malária Cerebral/patologia , Plasmodium berghei/imunologia , Plasmodium berghei/patogenicidade , Animais , Encéfalo/imunologia , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Interleucina-10/sangue , Interleucina-10/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Microbes Infect ; 11(2): 172-80, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19049828

RESUMO

Chronic helminth infections such as filariasis in human hosts can be life long, since parasites are equipped with a repertoire of immune evasion strategies. In many areas where helminths are prevalent, other infections such as malaria are co-endemic. It is still an ongoing debate, how one parasite alters immune responses against another. To dissect the relationships between two different parasites residing in the same host, we established a murine model of co-infection with the filarial nematode Litomosoides sigmodontis and the malaria parasite Plasmodium berghei (ANKA strain). We found that filarial infection of BALB/c mice leads to protection against a subsequent P. berghei sporozoite infection in one-third of co-infected mice, which did not develop blood-stage malaria. This finding did not correlate with adult worm loads, however it did correlate with the presence of microfilariae in blood. Interestingly, protection was abrogated in IL-10-deficient mice. Thus, murine filariasis, in particular when it is a patent infection, is able to modify the immunological balance to induce protection against an otherwise deadly Plasmodium infection and is therefore able to influence the course of malaria in favour of the host.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Fígado/parasitologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Animais , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
15.
Infect Immun ; 74(9): 5236-43, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16926417

RESUMO

Eosinophils are a hallmark of allergic diseases and helminth infection, yet direct evidence for killing of helminth parasites by their toxic granule products exists only in vitro. We investigated the in vivo roles of the eosinophil granule proteins eosinophil peroxidase (EPO) and major basic protein 1 (MBP) during infection with the rodent filaria Litomosoides sigmodontis. Mice deficient for either EPO or MBP on the 129/SvJ background developed significantly higher worm burdens than wild-type mice. Furthermore, the data indicate that EPO or MBP is involved in modulating the immune response leading to altered cytokine production during infection. Thus, in the absence of MBP, mice showed increased interleukin-10 (IL-10) production after stimulation of macrophages from the thoracic cavity where the worms reside. In addition to elevated IL-10 levels, EPO(-/-) mice displayed strongly increased amounts of the Th2 cytokine IL-5 by CD4 T cells as well as a significantly higher eosinophilia. Interestingly, a reduced ability to produce IL-4 in the knockout strains could even be seen in noninfected mice, arguing for different innate propensities to react with a Th2 response in the absence of either EPO or MBP. In conclusion, both of the eosinophil granule products MBP and EPO are part of the defense mechanism against filarial parasites. These data suggest a hitherto unknown interaction between eosinophil granule proteins, defense against filarial nematodes, and cytokine responses of macrophages and CD4 T cells.


Assuntos
Proteína Básica Maior de Eosinófilos/fisiologia , Peroxidase de Eosinófilo/fisiologia , Eosinófilos/imunologia , Filariose/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Citocinas/metabolismo , Suscetibilidade a Doenças , Proteína Básica Maior de Eosinófilos/deficiência , Proteína Básica Maior de Eosinófilos/genética , Peroxidase de Eosinófilo/deficiência , Peroxidase de Eosinófilo/genética , Eosinófilos/enzimologia , Filariose/enzimologia , Filariose/genética , Filarioidea , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Knockout , Células Th2/imunologia , Cavidade Torácica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA