Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(9): 1144-1161, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37017084

RESUMO

BACKGROUND: Genome-wide association studies have identified hundreds of loci associated with common vascular diseases, such as coronary artery disease, myocardial infarction, and hypertension. However, the lack of mechanistic insights for many GWAS loci limits their translation into the clinic. Among these loci with unknown functions is UFL1-four-and-a-half LIM (LIN-11, Isl-1, MEC-3) domain 5 (FHL5; chr6q16.1), which reached genome-wide significance in a recent coronary artery disease/ myocardial infarction GWAS meta-analysis. UFL1-FHL5 is also associated with several vascular diseases, consistent with the widespread pleiotropy observed for GWAS loci. METHODS: We apply a multimodal approach leveraging statistical fine-mapping, epigenomic profiling, and ex vivo analysis of human coronary artery tissues to implicate FHL5 as the top candidate causal gene. We unravel the molecular mechanisms of the cross-phenotype genetic associations through in vitro functional analyses and epigenomic profiling experiments in coronary artery smooth muscle cells. RESULTS: We prioritized FHL5 as the top candidate causal gene at the UFL1-FHL5 locus through expression quantitative trait locus colocalization methods. FHL5 gene expression was enriched in the smooth muscle cells and pericyte population in human artery tissues with coexpression network analyses supporting a functional role in regulating smooth muscle cell contraction. Unexpectedly, under procalcifying conditions, FHL5 overexpression promoted vascular calcification and dysregulated processes related to extracellular matrix organization and calcium handling. Lastly, by mapping FHL5 binding sites and inferring FHL5 target gene function using artery tissue gene regulatory network analyses, we highlight regulatory interactions between FHL5 and downstream coronary artery disease/myocardial infarction loci, such as FOXL1 and FN1 that have roles in vascular remodeling. CONCLUSIONS: Taken together, these studies provide mechanistic insights into the pleiotropic genetic associations of UFL1-FHL5. We show that FHL5 mediates vascular disease risk through transcriptional regulation of downstream vascular remodeling gene programs. These transacting mechanisms may explain a portion of the heritable risk for complex vascular diseases.


Assuntos
Doença da Artéria Coronariana , Hipertensão , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla , Remodelação Vascular , Infarto do Miocárdio/metabolismo , Hipertensão/metabolismo , Miócitos de Músculo Liso/metabolismo , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Transcrição/metabolismo , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo
2.
Int J Mol Sci ; 23(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35409289

RESUMO

Glioblastoma (GBM) is the most frequent and lethal primary malignant brain tumor. Despite decades of research, therapeutic advances that significantly prolong life are non-existent. In recent years, microRNAs (miRNAs) have been a focus of study in the pathobiology of cancer because of their ability to simultaneously regulate multiple genes. The aim of this study was to determine the functional and mechanistic effects of miR-3928 in GBM both in vitro and in vivo. To the best of our knowledge, this is the first article investigating the role of miR-3928 in GBM. We measured endogenous miR-3928 expression levels in a panel of patient-derived GBM tissue samples and cell lines. We found that GBM tissue samples and cell lines express lower levels of miR-3928 than normal brain cortex and astrocytes, respectively. Therefore, we hypothesized that miR-3928 is a tumor suppressive microRNA. We verified this hypothesis by showing that exogenous expression of miR-3928 has a strong inhibitory effect on both cell growth and invasiveness of GBM cells. Stable ex vivo overexpression of miR-3928 in GBM cells led to a reduction in tumor size in nude mice xenografts. We identified many targets (MDM2, CD44, DDX3X, HMGA2, CCND1, BRAF, ATOH8, and BMI1) of miR-3928. Interestingly, inhibition of the oncogene MDM2 also led to an upregulation of wild-type p53 expression and phosphorylation. In conclusion, we find that miR-3928, through the downregulation of several oncogenes and upregulation and activation of wild-type p53, is a strong tumor suppressor in GBM. Furthermore, the fact that miR-3928 can target many important dysregulated proteins in GBM suggests it might be a "master" regulatory microRNA that could be therapeutically exploited.


Assuntos
Glioblastoma , MicroRNAs , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Oncogenes , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética
3.
bioRxiv ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39229003

RESUMO

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor. The aim of this study was to elucidate the role of microenvironment and intrinsic T-type calcium channels (Cav3) in regulating tumor growth and progression. Methods: We grafted syngeneic GBM cells into Cav3.2 knockout mice to assess the role of microenvironment T-Type calcium channels on GBM tumor growth. We performed single-cell RNA-seq (scRNA-seq) of tumors from WT and Cav3.2 KO mice to elucidate the regulation of tumors by the microenvironment. We used neurons from WT and Cav3.2 KO mice in co-culture with GBM stem cells (GSC) to assess the effects of Cav3.2 on neuron/GSC synaptic connections and tumor cell growth. Results: Cav3.2 KO in the microenvironment led to significant reduction of GBM growth and prolongation of animal survival. scRNA-seq showed that microenvironment Cav3.2 regulates neuronal and glial biological processes. Microenvironment Cav3.2 downregulated numerous genes associated with regulating the OPC cell state in GBM tumors such as SOX10 and Olig2. Neuronal Cav3.2 promoted neuron/GSC synaptic connections and GSC growth. Treatment of GSCs with the Cav3 blocker mibefradil downregulated genes associated with neuronal processes. The Cav3 blocker drug mibefradil synergized with temozolomide (TMZ) and radiation to reduce in vivo tumor growth and prolong animal survival. Conclusions: Together these data reveal a role for microenvironment Cav3 in promoting GBM tumor progression through regulating neuronal and glial processes particularly associated with the OPC-cell state. Targeting both intrinsic and microenvironment Cav3 with the inhibitor mibefradil significantly enhanced the anti-GBM effects of TMZ and radiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA