Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nucleic Acids Res ; 50(10): 5807-5817, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35609997

RESUMO

Type II toxin-antitoxin (TA) systems are two-gene modules widely distributed among prokaryotes. GNAT toxins associated with the DUF1778 antitoxins represent a large family of type II TAs. GNAT toxins inhibit cell growth by disrupting translation via acetylation of aminoacyl-tRNAs. In this work, we explored the evolutionary trajectory of GNAT toxins. Using LC/MS detection of acetylated aminoacyl-tRNAs combined with ribosome profiling, we systematically investigated the in vivo substrate specificity of an array of diverse GNAT toxins. Our functional data show that the majority of GNAT toxins are specific to Gly-tRNA isoacceptors. However, the phylogenetic analysis shows that the ancestor of GNAT toxins was likely a relaxed specificity enzyme capable of acetylating multiple elongator tRNAs. Together, our data provide a remarkable snapshot of the evolution of substrate specificity.


Assuntos
Antitoxinas , Toxinas Bacterianas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Filogenia , RNA de Transferência/genética , Aminoacil-RNA de Transferência/genética , Sistemas Toxina-Antitoxina/genética
2.
Nucleic Acids Res ; 49(3): 1581-1596, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33434265

RESUMO

DNA gyrase, a type II topoisomerase found predominantly in bacteria, is the target for a variety of 'poisons', namely natural product toxins (e.g. albicidin, microcin B17) and clinically important synthetic molecules (e.g. fluoroquinolones). Resistance to both groups can be mediated by pentapeptide repeat proteins (PRPs). Despite long-term studies, the mechanism of action of these protective PRPs is not known. We show that a PRP, QnrB1 provides specific protection against fluoroquinolones, which strictly requires ATP hydrolysis by gyrase. QnrB1 binds to the GyrB protein and stimulates ATPase activity of the isolated N-terminal ATPase domain of GyrB (GyrB43). We probed the QnrB1 binding site using site-specific incorporation of a photoreactive amino acid and mapped the crosslinks to the GyrB43 protein. We propose a model in which QnrB1 binding allosterically promotes dissociation of the fluoroquinolone molecule from the cleavage complex.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Inibidores da Topoisomerase II/toxicidade , Trifosfato de Adenosina/metabolismo , Bacteriocinas/toxicidade , Ciprofloxacina/toxicidade , DNA/metabolismo , Escherichia coli/enzimologia , Hidrólise , Compostos Orgânicos/toxicidade , Xanthomonas
3.
Nucleic Acids Res ; 48(15): 8617-8625, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32597957

RESUMO

Type II toxin-antitoxins systems are widespread in prokaryotic genomes. Typically, they comprise two proteins, a toxin, and an antitoxin, encoded by adjacent genes and forming a complex in which the enzymatic activity of the toxin is inhibited. Under stress conditions, the antitoxin is degraded liberating the active toxin. Though thousands of various toxin-antitoxins pairs have been predicted bioinformatically, only a handful has been thoroughly characterized. Here, we describe the AtaT2 toxin from a toxin-antitoxin system from Escherichia coli O157:H7. We show that AtaT2 is the first GNAT (Gcn5-related N-acetyltransferase) toxin that specifically targets charged glycyl tRNA. In vivo, the AtaT2 activity induces ribosome stalling at all four glycyl codons but does not evoke a stringent response. In vitro, AtaT2 acetylates the aminoacyl moiety of isoaccepting glycyl tRNAs, thus precluding their participation in translation. Our study broadens the known target specificity of GNAT toxins beyond the earlier described isoleucine and formyl methionine tRNAs, and suggest that various GNAT toxins may have evolved to specificaly target other if not all individual aminoacyl tRNAs.


Assuntos
Acetiltransferases/genética , Escherichia coli O157/genética , Glicina-tRNA Ligase/genética , Biossíntese de Proteínas/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli O157/patogenicidade , Sistemas Toxina-Antitoxina/genética
4.
Proc Natl Acad Sci U S A ; 115(38): 9551-9556, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181282

RESUMO

Microbiome spectra serve as critical clues to elucidate the evolutionary biology pathways, potential pathologies, and even behavioral patterns of the host organisms. Furthermore, exotic sources of microbiota represent an unexplored niche to discover microbial secondary metabolites. However, establishing the bacterial functionality is complicated by an intricate web of interactions inside the microbiome. Here we apply an ultrahigh-throughput (uHT) microfluidic droplet platform for activity profiling of the entire oral microbial community of the Siberian bear to isolate Bacillus strains demonstrating antimicrobial activity against Staphylococcus aureus Genome mining allowed us to identify antibiotic amicoumacin A (Ami) as responsible for inhibiting the growth of S. aureus Proteomics and metabolomics revealed a unique mechanism of Bacillus self-resistance to Ami, based on a subtle equilibrium of its deactivation and activation by kinase AmiN and phosphatase AmiO, respectively. We developed uHT quantitative single-cell analysis to estimate antibiotic efficacy toward different microbiomes and used it to determine the activity spectra of Ami toward human and Siberian bear microbiota. Thus, uHT microfluidic droplet platform activity profiling is a powerful tool for discovering antibiotics and quantifying external influences on a microbiome.


Assuntos
Antibacterianos/farmacologia , Cumarínicos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Metabolômica/métodos , Animais , Antibacterianos/metabolismo , Bacillus pumilus/efeitos dos fármacos , Bacillus pumilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cumarínicos/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Farmacorresistência Bacteriana/fisiologia , Microbioma Gastrointestinal/fisiologia , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Dispositivos Lab-On-A-Chip , Proteômica/métodos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Análise de Célula Única/métodos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Ursidae/microbiologia
5.
Nucleic Acids Res ; 46(15): 7873-7885, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29931259

RESUMO

Prokaryotic toxin-antitoxin (TA) modules are highly abundant and are involved in stress response and drug tolerance. The most common type II TA modules consist of two interacting proteins. The type II toxins are diverse enzymes targeting various essential intracellular targets. The antitoxin binds to cognate toxin and inhibits its function. Recently, TA modules whose toxins are GNAT-family acetyltransferases were described. For two such systems, the target of acetylation was shown to be aminoacyl-tRNA: the TacT toxin targets aminoacylated elongator tRNAs, while AtaT targets the amino acid moiety of initiating tRNAMet. We show that the itaRT gene pair from Escherichia coli encodes a TA module with acetyltransferase toxin ItaT that specifically and exclusively acetylates Ile-tRNAIle thereby blocking translation and inhibiting cell growth. ItaT forms a tight complex with the ItaR antitoxin, which represses the transcription of itaRT operon. A comprehensive bioinformatics survey of GNAT acetyltransferases reveals that enzymes encoded by validated or putative TA modules are common and form a distinct branch of the GNAT family tree. We speculate that further functional analysis of such TA modules will result in identification of enzymes capable of specifically targeting many, perhaps all, aminoacyl tRNAs.


Assuntos
Acetiltransferases/genética , Antitoxinas/genética , Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , RNA de Transferência de Isoleucina/genética , Acetilação , Acetiltransferases/metabolismo , Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Biossíntese de Proteínas/genética , Processamento de Proteína Pós-Traducional , RNA de Transferência de Isoleucina/metabolismo , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo
6.
J Am Chem Soc ; 139(45): 16178-16187, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29045133

RESUMO

Microcin C is a heptapeptide-adenylate antibiotic produced by some strains of Escherichia coli. Its peptide part is responsible for facilitated transport inside sensitive cells where it is proteolyzed with release of a toxic warhead-a nonhydrolyzable aspartamidyl-adenylate, which inhibits aspartyl-tRNA synthetase. Recently, a microcin C homologue from Bacillus amyloliquefaciens containing a longer peptide part modified with carboxymethyl-cytosine instead of adenosine was described, but no biological activity of this compound was revealed. Here, we characterize modified peptide-cytidylate from Yersinia pseudotuberculosis. As reported for B. amyloliquefaciens homologue, the initially synthesized compound contains a long peptide that is biologically inactive. This compound is subjected to endoproteolytic processing inside producing cells by the evolutionary conserved TldD/E protease. As a result, an 11-amino acid long peptide with C-terminal modified cytosine residue is produced. This compound is exported outside the producing cell and is bioactive, inhibiting sensitive cells in the same way as E. coli microcin C. Proteolytic processing inside producing cells is a novel strategy of peptide-nucleotide antibiotics biosynthesis that may help control production levels and avoid toxicity to the producer.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Óperon/genética , Peptídeo Hidrolases/metabolismo , Yersinia pseudotuberculosis/metabolismo , Antibacterianos/química , Citidina/biossíntese , Citidina/química , Citidina/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Yersinia pseudotuberculosis/citologia , Yersinia pseudotuberculosis/genética
7.
J Am Chem Soc ; 138(48): 15690-15698, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27934031

RESUMO

Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.


Assuntos
Antibacterianos/farmacologia , Aspartato-tRNA Ligase/antagonistas & inibidores , Bacillus amyloliquefaciens/química , Bacteriocinas/farmacologia , Inibidores Enzimáticos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Bacteriocinas/química , Bacteriocinas/isolamento & purificação , Biologia Computacional , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Estrutura Molecular
8.
J Bacteriol ; 197(19): 3133-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195597

RESUMO

UNLABELLED: Escherichia coli microcin C (McC) consists of a ribosomally synthesized heptapeptide attached to a modified adenosine. McC is actively taken up by sensitive Escherichia coli strains through the YejABEF transporter. Inside the cell, McC is processed by aminopeptidases, which release nonhydrolyzable aminoacyl adenylate, an inhibitor of aspartyl-tRNA synthetase. McC is synthesized by the MccB enzyme, which terminally adenylates the MccA heptapeptide precursor MRTGNAN. Earlier, McC analogs with shortened peptide lengths were prepared by total chemical synthesis and were shown to have strongly reduced biological activity due to decreased uptake. Variants with longer peptides were difficult to synthesize, however. Here, we used recombinant MccB to prepare and characterize McC-like molecules with altered peptide moieties, including extended peptide lengths. We find that N-terminal extensions of E. coli MccA heptapeptide do not affect MccB-catalyzed adenylation and that some extended-peptide-length McC analogs show improved biological activity. When the peptide length reaches 20 amino acids, both YejABEF and SbmA can perform facilitated transport of toxic peptide adenylates inside the cell. A C-terminal fusion of the carrier maltose-binding protein (MBP) with the MccA peptide is also recognized by MccB in vivo and in vitro, allowing highly specific adenylation and/or radioactive labeling of cellular proteins. IMPORTANCE: Enzymatic adenylation of chemically synthesized peptides allowed us to generate biologically active derivatives of the peptide-nucleotide antibiotic microcin C with improved bioactivity and altered entry routes into target cells, opening the way for development of various McC-based antibacterial compounds not found in nature.


Assuntos
Bacteriocinas/síntese química , Escherichia coli/metabolismo , Sequência de Aminoácidos , Bacteriocinas/química , Bacteriocinas/metabolismo , Clonagem Molecular , Proteínas de Escherichia coli/química , Ligases/química , Estrutura Molecular , Mutação
9.
J Bacteriol ; 197(13): 2217-2228, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917903

RESUMO

UNLABELLED: Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. IMPORTANCE: One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake systems could also be exploited by a Trojan horse strategy to facilitate the transport of antibiotics into bacterial cells. Several natural antibiotics mimic substrates of peptide uptake routes. In this study, we analyzed an ABC transporter involved in the uptake of nucleoside peptidyl antibiotics. Our data might help to design drug conjugates that may hijack this uptake system to gain access to cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Bacteriocinas/metabolismo , Transporte Biológico , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Nucleosídeos/metabolismo , Pseudomonas aeruginosa/genética
10.
J Am Chem Soc ; 136(31): 11168-75, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25026542

RESUMO

Translation inhibitor microcin C (McC) is a heptapeptide with an aspartate α-carboxyl group linked to AMP via phosphoramidate bond. Modification of the McC phosphate by an aminopropyl moiety increases the biological activity by ~10-fold. Here, we determine the pathway of the aminopropylation reaction of McC. We show that the MccD enzyme uses S-adenosyl methionine to transfer 3-amino-3-carboxypropyl group onto a phosphate of an McC maturation intermediate consisting of adenylated heptapeptide. The carboxyl group is removed by the MccE enzyme, yielding mature McC. MccD is an inefficient enzyme that requires for its action the product of Escherichia coli mtn gene, a 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase, which hydrolyses 5'-methylthioadenosine, the product of MccD-catalyzed reaction, thus stimulating the amino-3-carboxypropylation reaction. Both MccD and MccE are capable of modifying McC-like compounds with divergent peptide moieties, opening way for preparation of more potent peptidyl-adenylates.


Assuntos
Antibacterianos/metabolismo , Bacteriocinas/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Bacteriocinas/biossíntese , Bacteriocinas/farmacologia , Ácidos Carboxílicos/metabolismo , Escherichia coli/enzimologia
11.
mBio ; 14(2): e0021723, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36802165

RESUMO

Phazolicin (PHZ) is a peptide antibiotic exhibiting narrow-spectrum activity against rhizobia closely related to its producer, Rhizobium sp. strain Pop5. Here, we show that the frequency of spontaneous PHZ-resistant mutants in Sinorhizobium meliloti is below the detection limit. We find that PHZ can enter S. meliloti cells through two distinct promiscuous peptide transporters, BacA and YejABEF, which belong to the SLiPT (SbmA-like peptide transporter) and ABC (ATP-binding cassette) transporter families, respectively. The dual-uptake mode explains the lack of observed resistance acquisition because the simultaneous inactivation of both transporters is necessary for resistance to PHZ. Since both BacA and YejABEF are essential for the development of functional symbiosis of S. meliloti with leguminous plants, the unlikely acquisition of PHZ resistance via the inactivation of these transporters is further disfavored. A whole-genome transposon sequencing screen did not reveal additional genes that can provide strong PHZ resistance when inactivated. However, it was found that the capsular polysaccharide KPS, the novel putative envelope polysaccharide PPP (PHZ-protecting polysaccharide), as well as the peptidoglycan layer jointly contribute to the sensitivity of S. meliloti to PHZ, most likely serving as barriers that reduce the amount of PHZ transported inside the cell. IMPORTANCE Many bacteria produce antimicrobial peptides to eliminate competitors and create an exclusive niche. These peptides act either by membrane disruption or by inhibiting essential intracellular processes. The Achilles' heel of the latter type of antimicrobials is their dependence on transporters to enter susceptible cells. Transporter inactivation results in resistance. Here, we show that a rhizobial ribosome-targeting peptide, phazolicin (PHZ), uses two different transporters, BacA and YejABEF, to enter the cells of a symbiotic bacterium, Sinorhizobium meliloti. This dual-entry mode dramatically reduces the probability of the appearance of PHZ-resistant mutants. Since these transporters are also crucial for S. meliloti symbiotic associations with host plants, their inactivation in natural settings is strongly disfavored, making PHZ an attractive lead for the development of biocontrol agents for agriculture.


Assuntos
Anti-Infecciosos , Sinorhizobium meliloti , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos/metabolismo , Bactérias Gram-Negativas/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiose/genética
12.
ACS Synth Biol ; 11(6): 2022-2028, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35674818

RESUMO

Biochemical and structural analyses of purified proteins are essential for the understanding of their properties. However, many proteins are unstable and difficult to purify, hindering their characterization. The B2 proteins of the lasso peptide biosynthetic pathways are cysteine proteases that cleave precursor peptides during the maturation process. The B2 proteins are poorly soluble, and no experimentally solved structures are available. Here, we performed a rapid semicomprehensive mutational analysis of the B2 protein from the thermophilic actinobacterium, Thermobifida fusca (FusB2), using a cell-free transcription/translation system, and compared the results with the structure prediction by AlphaFold2. Analysis of 34 FusB2 mutants with substitutions of hydrophobic residues confirmed the accuracy of the predicted structure, and revealed a hydrophobic patch on the protein surface, which likely serves as the binding site of the partner protein, FusB1. Our results suggest that the combination of rapid cell-free mutant analyses with precise structure predictions can greatly accelerate structure-function research of proteins for which no structures are available.


Assuntos
Actinobacteria , Peptídeo Hidrolases , Actinobacteria/metabolismo , Endopeptidases , Peptídeos/metabolismo , Proteínas
13.
mBio ; 13(3): e0080522, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35467414

RESUMO

Microcin C (McC)-like compounds are natural Trojan horse peptide-nucleotide antibiotics produced by diverse bacteria. The ribosomally synthesized peptide parts of these antibiotics are responsible for their facilitated transport into susceptible cells. Once inside the cell, the peptide part is degraded, releasing the toxic payload, an isoaspartyl-nucleotide that inhibits aspartyl-tRNA synthetase, an enzyme essential for protein synthesis. Bacteria that produce microcin C-like compounds have evolved multiple ways to avoid self-intoxication. Here, we describe a new strategy through the action of S51 family peptidases, which we name MccG. MccG cleaves the toxic isoaspartyl-nucleotide, rendering it inactive. While some MccG homologs are encoded by gene clusters responsible for biosynthesis of McC-like compounds, most are encoded by standalone genes whose products may provide a basal level of resistance to peptide-nucleotide antibiotics in phylogenetically distant bacteria. IMPORTANCE Here, we identified a natural substrate for a major phylogenetic clade of poorly characterized S51 family proteases from bacteria. We show that these proteins can contribute to a basal level of resistance to an important class of natural antibiotics.


Assuntos
Antibacterianos , Bacteriocinas , Antibacterianos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bacteriocinas/genética , Nucleotídeos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Filogenia
14.
Bioorg Med Chem ; 19(18): 5462-7, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21855353

RESUMO

Microcin C (McC) (1) is a potent antibacterial compound produced by some Escherichia coli strains. McC functions through a Trojan-Horse mechanism: it is actively taken up inside a sensitive cell through the function of the YejABEF-transporter and then processed by cellular aminopeptidases. Processed McC (2) is a non-hydrolysable aspartyl-adenylate analog that inhibits aspartyl-tRNA synthetase (AspRS). A new synthesis is described that allows for the production of a wide variety of McC analogs in acceptable amounts. Using this synthesis a number of diverse compounds was synthesized with altered target specificity. Further characteristics of the YejABEF transporters were determined using these compounds.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/química , Bacteriocinas/síntese química , Bacteriocinas/química , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Desenho de Fármacos , Escherichia coli/citologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Estereoisomerismo , Relação Estrutura-Atividade
15.
RSC Chem Biol ; 2(2): 468-485, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34382000

RESUMO

For most antimicrobial compounds with intracellular targets, getting inside the cell is the major obstacle limiting their activity. To pass this barrier some antibiotics mimic the compounds of specific interest for the microbe (siderophores, peptides, carbohydrates, etc.) and hijack the transport systems involved in their active uptake followed by the release of a toxic warhead inside the cell. In this review, we summarize the information about the structures, biosynthesis, and transport of natural inhibitors of aminoacyl-tRNA synthetases (albomycin, microcin C-related compounds, and agrocin 84) that rely on such "Trojan horse" strategy to enter the cell. In addition, we provide new data on the composition and distribution of biosynthetic gene clusters reminiscent of those coding for known Trojan horse aminoacyl-tRNA synthetases inhibitors. The products of these clusters are likely new antimicrobials that warrant further investigation.

16.
Life (Basel) ; 12(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35054418

RESUMO

Sponges are remarkable holobionts harboring extremely diverse microbial and viral communities. However, the interactions between the components within holobionts and between a holobiont and environment are largely unknown, especially for polar organisms. To investigate possible interactions within and between sponge-associated communities, we probed the microbiomes and viromes of cold-water sympatric sponges Isodictya palmata (n = 2), Halichondria panicea (n = 3), and Halichondria sitiens (n = 3) by 16S and shotgun metagenomics. We showed that the bacterial and viral communities associated with these White Sea sponges are species-specific and different from the surrounding water. Extensive mining of bacterial antiphage defense systems in the metagenomes revealed a variety of defense mechanisms. The abundance of defense systems was comparable in the metagenomes of the sponges and the surrounding water, thus distinguishing the White Sea sponges from those inhabiting the tropical seas. We developed a network-based approach for the combined analysis of CRISPR-spacers and protospacers. Using this approach, we showed that the virus-host interactions within the sponge-associated community are typically more abundant (three out of four interactions studied) than the inter-community interactions. Additionally, we detected the occurrence of viral exchanges between the communities. Our work provides the first insight into the metagenomics of the three cold-water sponge species from the White Sea and paves the way for a comprehensive analysis of the interactions between microbial communities and associated viruses.

17.
iScience ; 24(5): 102480, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113822

RESUMO

Lanthipeptides, ribosomally synthesized and post-translationally modified peptides (RiPPs), can be divided into five classes based on their structures and biosynthetic pathways. Class I and II lanthipeptides have been well characterized, whereas less is known about members of the other three classes. Here, we describe a new family of class III lanthipeptides from Firmicutes. Members of the family are distinguished by the presence of a single carboxy-terminal labionin. We identified and characterized andalusicin, a representative of this family. Andalusicin bears two methyl groups at the α-amino terminus, a post-translational modification that has not previously been identified in class III lanthipeptides. Mature andalusicin A shows bioactivity against various Gram-positive bacteria, an activity that is highly dependent on the α-N dimethylation.

18.
J Biol Chem ; 284(27): 17902-13, 2009 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-19359249

RESUMO

Lethal factor (LF), a zinc-dependent protease of high specificity produced by Bacillus anthracis, is the effector component of the binary toxin that causes death in anthrax. New therapeutics targeting the toxin are required to reduce systemic anthrax-related fatalities. In particular, new insights into the LF catalytic mechanism will be useful for the development of LF inhibitors. We evaluated the minimal length required for formation of bona fide LF substrates using substrate phage display. Phage-based selection yielded a substrate that is cleaved seven times more efficiently by LF than the peptide targeted in the protein kinase MKK6. Site-directed mutagenesis within the metal-binding site in the LF active center and within phage-selected substrates revealed a complex pattern of LF-substrate interactions. The elementary steps of LF-mediated proteolysis were resolved by the stopped-flow technique. Pre-steady-state kinetics of LF proteolysis followed a four-step mechanism as follows: initial substrate binding, rearrangement of the enzyme-substrate complex, a rate-limiting cleavage step, and product release. Examination of LF interactions with metal ions revealed an unexpected activation of the protease by Ca(2+) and Mn(2+). Based on the available structural and kinetic data, we propose a model for LF-substrate interaction. Resolution of the kinetic and structural parameters governing LF activity may be exploited to design new LF inhibitors.


Assuntos
Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Sequência de Aminoácidos , Apoenzimas/genética , Apoenzimas/metabolismo , Catálise , Domínio Catalítico/fisiologia , Cátions Bivalentes/metabolismo , Clonagem Molecular , Ativação Enzimática/fisiologia , Escherichia coli , Hidrólise , Cinética , MAP Quinase Quinase 6/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Biblioteca de Peptídeos , Especificidade por Substrato
19.
mBio ; 11(2)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265328

RESUMO

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like compounds by hydrolyzing the phosphoramide bond in toxic aspartamide-adenosine, rendering them inactive.IMPORTANCE Uncovering the mechanisms of resistance is a required step for countering the looming antibiotic resistance crisis. In this communication, we show how universally conserved histidine-triad hydrolases provide resistance to microcin C, a potent inhibitor of bacterial protein synthesis.


Assuntos
Antibacterianos/metabolismo , Bacteriocinas/genética , Hidrolases/metabolismo , Família Multigênica , Myxococcales/enzimologia , Myxococcales/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Farmacorresistência Bacteriana , Escherichia coli/genética , Hidrolases/genética , Myxococcales/efeitos dos fármacos , Óperon , Peptídeos/metabolismo , Peptídeos/farmacologia
20.
ACS Chem Biol ; 14(7): 1619-1627, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31188556

RESUMO

Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) with a unique 3D-interlocked structure, in which an N-terminal macrolactam ring is threaded by a linear C-terminal part. The unique structure of lasso peptides is introduced into ribosomally translated precursor peptides by lasso peptide synthetase encompassing proteins B and C or B1, B2, and C when the B enzyme is split into two distinct proteins. The B1 protein recognizes the leader sequence of the precursor peptide, and then the B2 protein cleaves it. The C protein catalyzes the formation of the macrolactam ring. However, the detailed mechanism of lasso peptide maturation has remained elusive, due to the lack of structural information about the responsible proteins. Here we report the crystal structure of the B1 protein from the thermophilic actinobacteria, Thermobifida fusca (TfuB1), complexed with the leader peptide (TfuA-Leader), which revealed the detailed mechanism of leader peptide recognition. The structure of TfuB1 consists of an N-terminal ß-sheet and three C-terminal helices. The leader peptide is docked on one edge of the N-terminal ß-sheet of TfuB1, as an additional ß strand. Three conserved amino acid residues of the leader peptide (TfuA Tyr-17, Pro-14, and Leu-12) fit well on the hydrophobic cleft between the ß-sheet and adjacent helices. Biochemical analysis demonstrated that these conserved residues are essential for affinity between TfuB1 and the TfuA-Leader. Furthermore, we found that TfuB1 and the leader peptide jointly form a hydrophobic patch on the ß-sheet, which includes the highly conserved TfuA Phe-6 and TfuB1 Tyr33. Homology modeling and mutational analysis of the B1 protein from a firmicute, Bacillus pseudomycoides (PsmB1), revealed that the hydrophobic patch is conserved in a wide range of species and involved in the cleavage activity of the B2 protein, indicating it forms the interaction surface for the B2 protein or the core part of the precursor peptide.


Assuntos
Actinobacteria/química , Proteínas de Bactérias/química , Peptídeos/química , Sinais Direcionadores de Proteínas , Cristalografia por Raios X , Modelos Moleculares , Biossíntese Peptídica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Thermobifida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA