Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Plant ; 166(1): 288-299, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30793329

RESUMO

The PsbO protein is an essential extrinsic subunit of photosystem II, the pigment-protein complex responsible for light-driven water splitting. Water oxidation in photosystem II supplies electrons to the photosynthetic electron transfer chain and is accompanied by proton release and oxygen evolution. While the electron transfer steps in this process are well defined and characterized, the driving forces acting on the liberated protons, their dynamics and their destiny are all largely unknown. It was suggested that PsbO undergoes proton-induced conformational changes and forms hydrogen bond networks that ensure prompt proton removal from the catalytic site of water oxidation, i.e. the Mn4 CaO5 cluster. This work reports the purification and characterization of heterologously expressed PsbO from green algae Chlamydomonas reinhardtii and two isoforms from the higher plant Solanum tuberosum (PsbO1 and PsbO2). A comparison to the spinach PsbO reveals striking similarities in intrinsic protein fluorescence and CD spectra, reflecting the near-identical secondary structure of the proteins from algae and higher plants. Titration experiments using the hydrophobic fluorescence probe ANS revealed that eukaryotic PsbO proteins exhibit acid-base hysteresis. This hysteresis is a dynamic effect accompanied by changes in the accessibility of the protein's hydrophobic core and is not due to reversible oligomerization or unfolding of the PsbO protein. These results confirm the hypothesis that pH-dependent dynamic behavior at physiological pH ranges is a common feature of PsbO proteins and causes reversible opening and closing of their ß-barrel domain in response to the fluctuating acidity of the thylakoid lumen.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Complexo de Proteína do Fotossistema II/metabolismo
2.
BMC Plant Biol ; 15: 133, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26051374

RESUMO

BACKGROUND: PsbO, the manganese-stabilising protein, is an indispensable extrinsic subunit of photosystem II. It plays a crucial role in the stabilisation of the water-splitting Mn4CaO5 cluster, which catalyses the oxidation of water to molecular oxygen by using light energy. PsbO was also demonstrated to have a weak GTPase activity that could be involved in regulation of D1 protein turnover. Our analysis of psbO sequences showed that many angiosperm species express two psbO paralogs, but the pairs of isoforms in one species were not orthologous to pairs of isoforms in distant species. RESULTS: Phylogenetic analysis of 91 psbO sequences from 49 land plant species revealed that psbO duplication occurred many times independently, generally at the roots of modern angiosperm families. In spite of this, the level of isoform divergence was similar in different species. Moreover, mapping of the differences on the protein tertiary structure showed that the isoforms in individual species differ from each other on similar positions, mostly on the luminally exposed end of the ß-barrel structure. Comparison of these differences with the location of differences between PsbOs from diverse angiosperm families indicated various selection pressures in PsbO evolution and potential interaction surfaces on the PsbO structure. CONCLUSIONS: The analyses suggest that similar subfunctionalisation of PsbO isoforms occurred parallelly in various lineages. We speculate that the presence of two PsbO isoforms helps the plants to finely adjust the photosynthetic apparatus in response to variable conditions. This might be mediated by diverse GTPase activity, since the isoform differences predominate near the predicted GTP-binding site.


Assuntos
Magnoliopsida/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/metabolismo , Genes de Plantas , Magnoliopsida/genética , Modelos Moleculares , Fases de Leitura Aberta/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA