RESUMO
The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which ß-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-ß-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.
Assuntos
Diterpenos , Psychodidae , Animais , Feromônios/metabolismo , Psychodidae/metabolismo , Diterpenos/metabolismo , Terpenos , MonoterpenosRESUMO
The androgen receptor (AR) is a crucial coactivator of ELK1 for prostate cancer (PCa) growth, associating with ELK1 through two peptide segments (358-457 and 514-557) within the amino-terminal domain (NTD) of AR. The small-molecule antagonist 5-hydroxy-2-(3-hydroxyphenyl)chromen-4-one (KCI807) binds to AR, blocking ELK1 binding and inhibiting PCa growth. We investigated the mode of interaction of KCI807 with AR using systematic mutagenesis coupled with ELK1 coactivation assays, testing polypeptide binding and Raman spectroscopy. In full-length AR, deletion of neither ELK1 binding segment affected sensitivity of residual ELK1 coactivation to KCI807. Although the NTD is sufficient for association of AR with ELK1, interaction of the isolated NTD with ELK1 was insensitive to KCI807. In contrast, coactivation of ELK1 by the AR-V7 splice variant, comprising the NTD and the DNA binding domain (DBD), was sensitive to KCI807. Deletions and point mutations within DBD segment 558-595, adjacent to the NTD, interfered with coactivation of ELK1, and residual ELK1 coactivation by the mutants was insensitive to KCI807. In a glutathione S-transferase pull-down assay, KCI807 inhibited ELK1 binding to an AR polypeptide that included the two ELK1 binding segments and the DBD but did not affect ELK1 binding to a similar AR segment that lacked the sequence downstream of residue 566. Raman spectroscopy detected KCI807-induced conformational change in the DBD. The data point to a putative KCI807 binding pocket within the crystal structure of the DBD and indicate that either mutations or binding of KCI807 at this site will induce conformational changes that disrupt ELK1 binding to the NTD. SIGNIFICANCE STATEMENT: The small-molecule antagonist KCI807 disrupts association of the androgen receptor (AR) with ELK1, serving as a prototype for the development of small molecules for a novel type of therapeutic intervention in drug-resistant prostate cancer. This study provides basic information needed for rational KCI807-based drug design by identifying a putative binding pocket in the DNA binding domain of AR through which KCI807 modulates the amino-terminal domain to inhibit ELK1 binding.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Domínios Proteicos , Peptídeos/uso terapêutico , Neoplasias da Próstata/metabolismo , DNA , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/uso terapêuticoRESUMO
Post-translational modifications (PTMs) are important for protein folding and activity, and the ability to recreate physiologically relevant PTM profiles on recombinantly-expressed proteins is vital for meaningful functional analysis. The ETS transcription factor ELK-1 serves as a paradigm for cellular responses to mitogens and can synergise with androgen receptor to promote prostate cancer progression, although in vitro protein function analyses to date have largely overlooked its complex PTM landscapes. We expressed and purified human ELK-1 using mammalian (HEK293T), insect (Sf9) and bacterial (E. coli) systems in parallel and compared PTMs imparted upon purified proteins, along with their performance in DNA and protein interaction assays. Phosphorylation of ELK-1 within its transactivation domain, known to promote DNA binding, was most apparent in protein isolated from human cells and accordingly conferred the strongest DNA binding in vitro, while protein expressed in insect cells bound most efficiently to the androgen receptor. We observed lysine acetylation, a hitherto unreported PTM of ELK-1, which appeared highest in insect cell-derived ELK-1 but was also present in HEK293T-derived ELK-1. Acetylation of ELK-1 was enhanced in HEK293T cells following starvation and mitogen stimulation, and modified lysines showed overlap with previously identified regulatory SUMOylation and ubiquitination sites. Our data demonstrate that the choice of recombinant expression system can be tailored to suit biochemical application rather than to maximise soluble protein production and suggest the potential for crosstalk and antagonism between different PTMs of ELK-1.
Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Elk-1 do Domínio ets , Animais , Humanos , DNA/metabolismo , Escherichia coli/metabolismo , Células HEK293 , Mamíferos , Fosforilação , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Elk-1 do Domínio ets/biossíntese , Proteínas Elk-1 do Domínio ets/metabolismo , Células Sf9/metabolismoRESUMO
Prostate cancer (PCa) growth requires tethering of the androgen receptor (AR) to chromatin by the ETS domain transcription factor ELK1 to coactivate critical cell proliferation genes. Disruption of the ELK1-AR complex is a validated potential means of therapeutic intervention in PCa. AR associates with ELK1 by coopting its two ERK docking sites, through the amino-terminal domain (A/B domain) of AR. Using a mammalian two-hybrid assay, we have now functionally mapped amino acids within the peptide segments 358-457 and 514-557 in the A/B domain as required for association with ELK1. The mapping data were validated by GST (glutathione S-transferase)-pulldown and BRET (bioluminescence resonance energy transfer) assays. Comparison of the relative contributions of the interacting motifs/segments in ELK1 and AR to coactivation of ELK1 by AR suggested a parallel mode of binding of AR and ELK1 polypeptides. Growth of PCa cells was partially inhibited by deletion of the upstream segment in AR and nearly fully inhibited by deletion of the downstream segment. Our studies have identified two peptide segments in AR that mediate the functional association of AR with its two docking sites in ELK1. Identification of the ELK1 recognition sites in AR should enable further structural studies of the ELK1-AR interaction and rational design of small molecule drugs to disrupt this interaction.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Mamíferos/metabolismo , Peptídeos/genética , Peptídeos/uso terapêutico , Neoplasias da Próstata/genética , Receptores Androgênicos/química , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/uso terapêuticoRESUMO
The mitogen-responsive, ETS-domain transcription factor ELK-1 stimulates the expression of immediate early genes at the onset of the cell cycle and participates in early developmental programming. ELK-1 is subject to multiple levels of posttranslational control, including phosphorylation, SUMOylation, and ubiquitination. Recently, removal of monoubiquitin from the ELK-1 ETS domain by the Ubiquitin Specific Protease USP17 was shown to augment ELK-1 transcriptional activity and promote cell proliferation. Here we have used coimmunoprecipitation experiments, protein turnover and ubiquitination assays, RNA-interference and gene expression analyses to examine the possibility that USP17 acts antagonistically with the F-box protein FBXO25, an E3 ubiquitin ligase previously shown to promote ELK-1 ubiquitination and degradation. Our data confirm that FBXO25 and ELK-1 interact in HEK293T cells and that FBXO25 is active toward Hand1 and HAX1, two of its other candidate substrates. However, our data indicate that FBXO25 neither promotes ubiquitination of ELK-1 nor impacts on its transcriptional activity and suggest that an E3 ubiquitin ligase other than FBXO25 regulates ELK-1 ubiquitination and function.
Assuntos
Endopeptidases/metabolismo , Proteínas F-Box/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Transcrição Gênica , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Proliferação de Células , Endopeptidases/genética , Proteínas F-Box/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Fosforilação , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sumoilação , Transfecção , Ubiquitinação , Proteínas Elk-1 do Domínio ets/genéticaRESUMO
ELK-1 is a transcription factor involved in ERK-induced cellular proliferation. Here, we show that its transcriptional activity is modulated by ubiquitination at lysine 35 (K35). The level of ubiquitinated ELK-1 rises in mitogen-deprived cells and falls upon mitogen stimulation or oncogene expression. Ectopic expression of USP17, a cell cycle-dependent deubiquitinase, decreases ELK-1 ubiquitination and up-regulates ELK-1 target-genes with a concomitant increase in cyclin D1 expression. In contrast, USP17 depletion attenuates ELK-1-dependent gene expression and slows cell proliferation. The reduced rate of proliferation upon USP17 depletion appears to be a direct effect of ELK-1 ubiquitination because it is rescued by an ELK-1(K35R) mutant refractory to ubiquitination. Overall, our results show that ubiquitination of ELK-1 at K35, and its reversal by USP17, are important mechanisms in the regulation of nuclear ERK signalling and cellular proliferation. Our findings will be relevant for tumours that exhibit elevated USP17 expression and suggest a new target for intervention.
Assuntos
Proliferação de Células/genética , Endopeptidases/genética , Mitose/genética , Proteínas Elk-1 do Domínio ets/genética , Ciclo Celular/genética , Núcleo Celular/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Células HeLa , Humanos , Fosforilação , Transdução de Sinais/genética , Fatores de Transcrição/genética , Ubiquitinação/genéticaRESUMO
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Assuntos
Neoplasias/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Neoplasias/metabolismo , UbiquitinaçãoRESUMO
Leishmaniasis is a debilitating and often fatal neglected tropical disease. Males from sub-populations of the Leishmania-harbouring sandfly, Lutzomyia longipalpis, produce the diterpene sex and aggregation pheromone, sobralene, for which geranylgeranyl diphosphate (GGPP) is the likely isoprenoid precursor. We have identified a GGPP synthase (lzGGPPS) from L. longipalpis, which was recombinantly expressed in bacteria and purified for functional and kinetic analysis. In vitro enzymatic assays using LC-MS showed that lzGGPPS is an active enzyme, capable of converting substrates dimethylallyl diphosphate (DMAPP), (E)-geranyl diphosphate (GPP), (E,E)-farnesyl diphosphate (FPP) with co-substrate isopentenyl diphosphate (IPP) into (E,E,E)-GGPP, while (Z,E)-FPP was also accepted with low efficacy. Comparison of metal cofactors for lzGGPPS highlighted Mg2+ as most efficient, giving increased GGPP output when compared against other divalent metal ions tested. In line with previously characterised GGPPS enzymes, GGPP acted as an inhibitor of lzGGPPS activity. The molecular weight in solution of lzGGPPS was determined to be â¼221 kDa by analytical SEC, suggesting a hexameric assembly, as seen in the human enzyme, and representing the first assessment of GGPPS quaternary structure in insects.
RESUMO
Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.
Assuntos
Enzimas Desubiquitinantes/metabolismo , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Ciclo Celular/fisiologia , Endopeptidases/metabolismo , Humanos , Neoplasias/patologiaRESUMO
PURPOSE: Testosterone suppression in prostate cancer is limited by serious side effects and resistance via restoration of androgen receptor (AR) functionality. ELK1 is required for AR-dependent growth in various hormone-dependent and castration-resistant prostate cancer models. The amino-terminal domain of AR docks at two sites on ELK1 to coactivate essential growth genes. This study explores the ability of small molecules to disrupt the ELK1-AR interaction in the spectrum of prostate cancer, inhibiting AR activity in a manner that would predict functional tumor selectivity. EXPERIMENTAL DESIGN: Small-molecule drug discovery and extensive biological characterization of a lead compound. RESULTS: We have discovered a lead molecule (KCI807) that selectively disrupts ELK1-dependent promoter activation by wild-type and variant ARs without interfering with ELK1 activation by ERK. KCI807 has an obligatory flavone scaffold and functional hydroxyl groups on C5 and C3'. KCI807 binds to AR, blocking ELK1 binding, and selectively blocks recruitment of AR to chromatin by ELK1. KCI807 primarily affects a subset of AR target growth genes selectively suppressing AR-dependent growth of prostate cancer cell lines with a better inhibitory profile than enzalutamide. KCI807 also inhibits in vivo growth of castration/enzalutamide-resistant cell line-derived and patient-derived tumor xenografts. In the rodent model, KCI807 has a plasma half-life of 6 hours, and maintenance of its antitumor effect is limited by self-induced metabolism at its 3'-hydroxyl. CONCLUSIONS: The results offer a mechanism-based therapeutic paradigm for disrupting the AR growth-promoting axis in the spectrum of prostate tumors while reducing global suppression of testosterone actions. KCI807 offers a good lead molecule for drug development.
Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/uso terapêutico , Animais , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ligação Proteica , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Elk-1 do Domínio ets/metabolismoRESUMO
The covalent attachment of palmitate to specific proteins by the action of palmitoyl acyltransferases (PAT) plays critical roles in the biological activities of several oncoproteins. Two PAT activities are expressed by human cells: type 1 PATs that modify the farnesyl-dependent palmitoylation motif found in H- and N-Ras, and type 2 PATs that modify the myristoyl-dependent palmitoylation motif found in the Src family of tyrosine kinases. We have previously shown that the type 1 PAT HIP14 causes cellular transformation. In the current study, we show that mRNA encoding HIP14 is up-regulated in a number of types of human tumors. To assess the potential of HIP14 and other PATs as targets for new anticancer drugs, we developed three cell-based assays suitable for high-throughput screening to identify inhibitors of these enzymes. Using these screens, five chemotypes, with activity toward either type 1 or type 2 PAT activity, were identified. The activity of the hits were confirmed using assays that quantify the in vitro inhibition of PAT activity, as well as a cell-based assay that determines the abilities of the compounds to prevent the localization of palmitoylated green fluorescent proteins to the plasma membrane. Representative compounds from each chemotype showed broad antiproliferative activity toward a panel of human tumor cell lines and inhibited the growth of tumors in vivo. Together, these data show that PATs, and HIP14 in particular, are interesting new targets for anticancer compounds, and that small molecules with such activity can be identified by high-throughput screening.
Assuntos
Aciltransferases/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas de Transporte/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias/enzimologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Aciltransferases/genética , Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/química , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Ensaios de Seleção de Medicamentos Antitumorais/estatística & dados numéricos , Inibidores Enzimáticos/química , Humanos , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismoRESUMO
N-myristoyltransferases (NMT) add myristate to the NH(2) termini of certain proteins, thereby regulating their localization and/or biological function. Using RNA interference, this study functionally characterizes the two NMT isozymes in human cells. Unique small interfering RNAs (siRNA) for each isozyme were designed and shown to decrease NMT1 or NMT2 protein levels by at least 90%. Ablation of NMT1 inhibited cell replication associated with a loss of activation of c-Src and its target FAK as well as reduction of signaling through the c-Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathway. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assays showed that depletion of either NMT isozyme induced apoptosis, with NMT2 having a 2.5-fold greater effect than NMT1. Western blot analyses revealed that loss of NMT2 shifted the expression of the BCL family of proteins toward apoptosis. Finally, intratumoral injection of siRNA for NMT1 or for both NMT1 and NMT2 inhibited tumor growth in vivo, whereas the same treatment with siRNA for NMT2 or negative control siRNA did not. Overall, the data indicate that NMT1 and NMT2 have only partially overlapping functions and that NMT1 is critical for tumor cell proliferation.
Assuntos
Aciltransferases/química , Apoptose , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Dados de Sequência Molecular , Ácidos Mirísticos/química , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-raf/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Tempo , Transfecção , Quinases da Família src/metabolismoRESUMO
Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm.
Assuntos
Evolução Molecular , Proteínas Elk-1 do Domínio ets/química , Proteínas Elk-1 do Domínio ets/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Elk-1 do Domínio ets/metabolismoRESUMO
Protein palmitoyltransferases (PATs) represent an exciting new target for anticancer drug design due to their pivotal roles in the subcellular localization of a number of oncogenes. We show that the Huntingtin interacting protein 14 (HIP14) is a PAT with a preference for the farnesyl-dependent palmitoylation motif found in H- and N-RAS. Characterization of HIP14 in mouse cells has revealed that it has the ability to induce colony formation in cell culture, anchorage-independent growth, and tumors in mice. Activity of the enzyme and its ability to transform cells is dependent on critical residues in the active site of the enzyme.
Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sequência de Bases , Transformação Celular Neoplásica , Primers do DNA , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células NIH 3T3Assuntos
Bioquímica/métodos , Cromatina/química , Cromatina/isolamento & purificação , Cromossomos/química , Cromossomos/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Plasmídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , UltracentrifugaçãoRESUMO
Protein palmitoylation is emerging as an important post-translational modification in development as well as in the establishment and progression of diseases such as cancer. This chapter describes the use of fluorescent lipidated peptides to characterize palmitoyl acyltransferase (PAT) activities in vitro and in intact cells. The peptides mimic two motifs that are enzymatically palmitoylated, i.e. C-terminal farnesyl and N-terminal myristoyl sequences. These substrate peptides can be separated from the palmitoylated product peptides by reversed-phase HPLC, detected and quantified by the fluorescence of their NBD label. Through these methods, the activities of PATs toward these alternate substrates in isolated membranes or intact cells can be quantified. The in vitro assay has been used to characterize human PATs and to identify inhibitors of these enzymes. The cellular assay has been useful in elucidating the kinetics of protein palmitoylation by PATs in situ, and the sub-cellular distribution of the palmitoylated products.
Assuntos
Aciltransferases/análise , Corantes Fluorescentes , Lipoproteínas , Ácido Palmítico/metabolismo , PeptídeosRESUMO
The covalent attachment of palmitate to proteins commonly occurs on cysteine residues near either N-myristoylated glycine residues or C-terminal farnesylated cysteine residues. It therefore seems likely that multiple palmitoyl-acyl transferase (PAT) activities exist to recognize and modify these distinct palmitoylation motifs. To evaluate this possibility, two synthetic peptides representing these palmitoylation motifs, termed MyrGCK(NBD) and FarnCNRas(NBD), were used to characterize PAT activity under a variety of conditions. The human tumour cell lines MCF-7 and Hep-G2 each demonstrated high levels of PAT activity towards both peptides. In contrast, normal mouse fibroblasts (NIH/3T3 cells) demonstrated PAT activity towards the myristoylated substrate peptide but not the farnesylated peptide, while ras -transformed NIH/3T3 cells were able to palmitoylate the FarnCNRas(NBD) peptide. The kinetic parameters for PAT activity were determined using membranes from MCF-7 cells, and indicated that the K (m) values for palmitoyl-CoA were identical for PAT activity towards the two substrate peptides; however, the K (m) for MyrGCK(NBD) was 5-fold lower than the K (m) for FarnCNRas(NBD). PAT activity towards the two substrate peptides was dose-dependently inhibited by 2-bromopalmitate and 3-(1-oxo-hexadecyl)oxiranecarboxamide (16C; IC(50) values of approx. 4 and 1.3 microM, respectively); however, 2-bromopalmitate was found to be uncompetitive with respect to palmitoyl-CoA, whereas 16C was competitive. To seek additional evidence for multiple PATs, the effects of altering the assay conditions on the palmitoylation of MyrGCK(NBD) and FarnCNRas(NBD) were compared. PAT activity towards the two peptide substrates was modulated similarly by changing the ionic strength or incubation temperature, or by the addition of dithiothreitol. In contrast, the enzymic palmitoylation of the two peptides was differentially affected by N -ethylmaleimide and thermal denaturation. Overall, these data demonstrate that the enzymic palmitoylation of farnesyl- and myristoyl-containing peptide substrates can be differentiated, suggesting that multiple motif-specific PATs exist.
Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Palmitoil Coenzima A/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Linhagem Celular , Humanos , Cinética , Fragmentos de Peptídeos/química , Conformação Proteica , Frações Subcelulares/enzimologia , Células Tumorais CultivadasRESUMO
In frog and zebrafish, the Mix/Bix family of paired type homeodomain proteins play key roles in specification and differentiation of mesendoderm. However, in mouse, only a single Mix gene (mMix) has been identified to date and its function is unknown. We have analyzed the expression of mouse Mix RNA and protein in embryos, embryoid bodies formed from embryonic stem cells and F9 teratocarcinoma cells, as well as several differentiated cell types. Expression in embryoid bodies in culture mirrors that in embryos, where Mix is transcribed transiently in primitive (visceral) endoderm (VE) and in nascent mesoderm. In F9 cells induced by retinoic acid to differentiate to VE, mMix is coordinately expressed with three other endodermal transcription factors, well before AFP, and its protein product is localized to the nucleus. In a subpopulation of nascent mesodermal cells from embryonic stem cell embryoid bodies, mMix is coexpressed with Brachyury. Intriguingly, mMix mRNA is detected in a population (T+Flk1+) of cells which may contain hemangioblasts, before the onset of hematopoiesis and activation of hematopoietic markers. In vitro and in vivo, mMix expression in nascent mesoderm is rapidly down-regulated and becomes undetectable in differentiated cell types. In the region of the developing gut, mMix expression is confined to the mesoderm of mid- and hindgut but is absent from definitive endoderm. Injection of mouse mMix RNA into early frog embryos results in axial truncation of developing tadpoles and, in animal cap assays, mMix alone is sufficient to activate expression of several endodermal (but not mesodermal) markers. Although these observations do not exclude a possible cell-autonomous function for mMix in mesendodermal progenitor cells, they do suggest an additional, non-cell autonomous role in nascent mesoderm in the formation and/or patterning of adjacent definitive endoderm.