Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Am J Respir Cell Mol Biol ; 71(4): 388-406, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39189891

RESUMO

Lung endothelium resides at the interface between the circulation and the underlying tissue, where it senses biochemical and mechanical properties of both the blood as it flows through the vascular circuit and the vessel wall. The endothelium performs the bidirectional signaling between the blood and tissue compartments that is necessary to maintain homeostasis while physically separating both, facilitating a tightly regulated exchange of water, solutes, cells, and signals. Disruption in endothelial function contributes to vascular disease, which can manifest in discrete vascular locations along the artery-to-capillary-to-vein axis. Although our understanding of mechanisms that contribute to endothelial cell injury and repair in acute and chronic vascular disease have advanced, pathophysiological mechanisms that underlie site-specific vascular disease remain incompletely understood. In an effort to improve the translatability of mechanistic studies of the endothelium, the American Thoracic Society convened a workshop to optimize rigor, reproducibility, and translation of discovery to advance our understanding of endothelial cell function in health and disease.


Assuntos
Endotélio Vascular , Pulmão , Humanos , Pulmão/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Animais , Estados Unidos , Sociedades Médicas , Pneumopatias/patologia , Pneumopatias/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia
2.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469626

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Assuntos
Dipeptidil Peptidase 4 , Lipopolissacarídeos , Macrófagos Alveolares , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Líquido da Lavagem Broncoalveolar , Permeabilidade Capilar , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L687-L697, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563965

RESUMO

Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1ß, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.


Assuntos
Células Endoteliais , Inflamação , Camundongos Knockout , Lesão Pulmonar Induzida por Ventilação Mecânica , Oxidorredutase com Domínios WW , Animais , Oxidorredutase com Domínios WW/metabolismo , Oxidorredutase com Domínios WW/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Silenciamento de Genes , Masculino , Pulmão/metabolismo , Pulmão/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
4.
Biophys J ; 122(24): 4730-4747, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-37978804

RESUMO

Vascular endothelial cells (ECs) form a semipermeable barrier separating vascular contents from the interstitium, thereby regulating the movement of water and molecular solutes across small intercellular gaps, which are continuously forming and closing. Under inflammatory conditions, however, larger EC gaps form resulting in increased vascular leakiness to circulating fluid, proteins, and cells, which results in organ edema and dysfunction responsible for key pathophysiologic findings in numerous inflammatory disorders. In this study, we extend our earlier work examining the biophysical properties of EC gap formation and now address the role of lamellipodia, thin sheet-like membrane projections from the leading edge, in modulating EC spatial-specific contractile properties and gap closure. Micropillars, fabricated by soft lithography, were utilized to form reproducible paracellular gaps in human lung ECs. Using time-lapse imaging via optical microscopy, rates of EC gap closure and motility were measured with and without EC stimulation with the barrier-enhancing sphingolipid, sphingosine-1-phosphate. Peripheral ruffle formation was ubiquitous during gap closure. Kymographs were generated to quantitatively compare the lamellipodia dynamics of sphingosine-1-phosphate-stimulated and -unstimulated ECs. Utilizing atomic force microscopy, we characterized the viscoelastic behavior of EC lamellipodia. Our results indicate decreased stiffness and increased liquid-like behavior of expanding lamellipodia compared with regions away from the cellular edge (lamella and cell body) during EC gap closure, results in sync with the rapid kinetics of protrusion/retraction motion. We hypothesize this dissipative EC behavior during gap closure is linked to actomyosin cytoskeletal rearrangement and decreased cross-linking during lamellipodia expansion. In summary, these studies of the kinetic and mechanical properties of EC lamellipodia and ruffles at gap boundaries yield insights into the mechanisms of vascular barrier restoration and potentially a model system for examining the druggability of lamellipodial protein targets to enhance vascular barrier integrity.


Assuntos
Células Endoteliais , Pseudópodes , Humanos , Pseudópodes/metabolismo , Lisofosfolipídeos/metabolismo , Citoesqueleto/metabolismo , Endotélio Vascular/metabolismo , Células Cultivadas
5.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L890-L897, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503995

RESUMO

In patients with sickle cell disease (SCD), acute chest syndrome (ACS) is a common form of acute lung injury and a major cause of morbidity and mortality. The pathophysiology of ACS is complex, and hemin, the prosthetic moiety of hemoglobin, has been implicated in endothelial cell (EC) activation and subsequent acute lung injury (ALI) and ACS in vitro and in animal studies. Here, we examined the role of cortactin (CTTN), a cytoskeletal protein that regulates EC function, in response to hemin-induced ALI and ACS. Cortactin heterozygous (Cttn+/-) mice (n = 8) and their wild-type siblings (n = 8) were irradiated and subsequently received bone marrow cells (BMCs) extruded from the femurs of SCD mice (SS) to generate SS Cttn+/- and SS CttnWT chimeras. Following hemoglobin electrophoretic proof of BMC transplantation, the mice received 35 µmol/kg of hemin. Within 24 h, surviving mice were euthanized, and bronchoalveolar fluid (BAL) and lung samples were analyzed. For in vitro studies, human lung microvascular endothelial cells (HLMVECs) were used to determine hemin-induced changes in gene expression and reactive oxygen species (ROS) generation in cortactin deficiency and control conditions. When compared with wild-type littermates, the mortality for SS Cttn+/- mice trended to be lower after hemin infusion and these mice exhibited less severe lung injury and less necroptotic cell death. In vitro studies confirmed that cortactin deficiency is protective against hemin-induced injury in HMLVECs, by decreasing protein expression of p38/HSP27, improving cell barrier function, and decreasing the production of ROS. Further studies examining the role of CTTN in ACS are warranted and may open a new avenue of potential treatment for this devastating disease.


Assuntos
Lesão Pulmonar Aguda , Anemia Falciforme , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Anemia Falciforme/complicações , Animais , Cortactina/genética , Cortactina/metabolismo , Células Endoteliais/metabolismo , Hemina/metabolismo , Hemina/farmacologia , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L149-L161, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35015568

RESUMO

Disruption of the lung endothelial barrier is a hallmark of acute respiratory distress syndrome (ARDS), for which no effective pharmacologic treatments exist. Prior work has demonstrated that FTY720 S-phosphonate (Tys), an analog of sphingosine-1-phosphate (S1P) and FTY720, exhibits potent endothelial cell (EC) barrier protective properties. In this study, we investigated the in vitro and in vivo efficacy of Tys against methicillin-resistant Staphylococcus aureus (MRSA), a frequent bacterial cause of ARDS. Tys-protected human lung EC from barrier disruption induced by heat-killed MRSA (HK-MRSA) or staphylococcal α-toxin and attenuated MRSA-induced cytoskeletal changes associated with barrier disruption, including actin stress fiber formation and loss of peripheral VE-cadherin and cortactin. Tys-inhibited Rho and myosin light chain (MLC) activation after MRSA and blocked MRSA-induced NF-κB activation and release of the proinflammatory cytokines, IL-6 and IL-8. In vivo, intratracheal administration of live MRSA in mice caused significant vascular leakage and leukocyte infiltration into the alveolar space. Pre- or posttreatment with Tys attenuated MRSA-induced lung permeability and levels of alveolar neutrophils. Posttreatment with Tys significantly reduced levels of bronchoalveolar lavage (BAL) VCAM-1 and plasma IL-6 and KC induced by MRSA. Dynamic intravital imaging of mouse lungs demonstrated Tys attenuation of HK-MRSA-induced interstitial edema and neutrophil infiltration into lung tissue. Tys did not directly inhibit MRSA growth or viability in vitro. In conclusion, Tys inhibits lung EC barrier disruption and proinflammatory signaling induced by MRSA in vitro and attenuates acute lung injury induced by MRSA in vivo. These results support the potential utility of Tys as a novel ARDS therapeutic strategy.


Assuntos
Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/patologia , Permeabilidade da Membrana Celular , Células Endoteliais/microbiologia , Cloridrato de Fingolimode/análogos & derivados , Staphylococcus aureus Resistente à Meticilina/fisiologia , Organofosfonatos/farmacologia , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Fingolimode/farmacologia , Humanos , Inflamação/patologia , Camundongos , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Cell Physiol Biochem ; 56(4): 329-339, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35856787

RESUMO

BACKGROUND/AIMS: Increase in vascular permeability is a cardinal feature of all inflammatory diseases and represents an imbalance in vascular contractile forces and barrier-restorative forces, both of which are highly dependent on actin cytoskeletal dynamics. In addition to the involvement of key vascular barrier-regulatory, actin-binding proteins, such as nmMLCK and cortactin, we recently demonstrated a role for a member of the Ena-VASP family known as Ena-VASP-like (EVL) in promoting vascular focal adhesion (FA) remodeling and endothelial cell (EC) barrier restoration/preservation. METHODS: To further understand the role of EVL in EC barrier-regulatory processes, we examined EVL-cytoskeletal protein interactions in FA dynamics in vitro utilizing lung EC and in vivo murine models of acute inflammatory lung injury. Deletion mapping studies and immunoprecipitation assays were performed to detail the interaction between EVL and cortactin, and further evaluated by assessment of changes in vascular EC permeability following disruption of EVL-cortactin interaction. RESULTS: Initial studies focusing on the actin-binding proteins, nmMLCK and cortactin, utilized deletion mapping of the cortactin gene (CTTN) to identify cortactin domains critical for EVL-cortactin interaction and verified the role of actin in promoting EVL-cortactin interaction. A role for profilins, actin-binding proteins that regulate actin polymerization, was established in facilitating EVL-FA binding. CONCLUSION: In summary, these studies further substantiate EVL participation in regulation of vascular barrier integrity and in the highly choreographed cytoskeletal interactions between key FA and cytoskeletal partners.


Assuntos
Actinas , Cortactina , Actinas/metabolismo , Animais , Adesão Celular , Cortactina/metabolismo , Células Endoteliais/metabolismo , Adesões Focais/metabolismo , Camundongos
8.
Respir Res ; 23(1): 211, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996109

RESUMO

Elevated ACE expression in tissues (reflected by blood ACE levels) is associated with increased risk of cardiovascular diseases and is also a marker for granulomatous diseases. We developed a new approach for characterization of ACE status in the blood-ACE phenotyping and established normal values of ACE levels 50-150% of control pooled plasma. ACE phenotyping was performed in citrated plasma of 120 patients with known interstitial lung diseases. In the 1st set of 100 patients we found 22 patients with ACE levels > 150%; ACE phenotyping also objectively identified the presence of ACE inhibitors in the plasma of 15 patients. After excluding these patients and patient with ACE mutation that increases ACE shedding, 17 patients were identified as a suspicious for systemic sarcoidosis based on elevation of blood ACE (> 150% of mean). A new parameter that we have established-ACE immunoreactivity (with mAb 9B9)-allowed us to detect 22 patients with decreased values (< 80%) of this parameter, which may indicate the presence of ACE in the blood that originates from macrophages/dendritic cells of granulomas. In the remaining 20 patients, this new parameter (mAbs binding/activity ratio) was calculated using 3 mAbs (9B9, 3A5 and i1A8-having overlapping epitopes), and 8 patients were identified as having decreases in this parameter, thus increasing dramatically the sensitivity for detection of patients with systemic sarcoidosis. Whole body PET scan confirmed extrapulmonary granulomas in some patients with lower immunoreactivity towards anti-ACE mAbs. ACE phenotyping has novel potential to noninvasively detect patients with systemic sarcoidosis.


Assuntos
Peptidil Dipeptidase A , Sarcoidose , Anticorpos Monoclonais/metabolismo , Epitopos , Granuloma , Humanos , Peptidil Dipeptidase A/genética , Sarcoidose/diagnóstico , Sarcoidose/genética
9.
BMC Pulm Med ; 22(1): 480, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528564

RESUMO

BACKGROUND: Acute lung injury and the acute respiratory distress syndrome are characterized by pulmonary inflammation, reduced endothelial barrier integrity and filling of the alveolar space with protein rich edema fluid and infiltrating leukocytes. Animal models are critical to uncovering the pathologic mechanisms of this devastating syndrome. Intravital imaging of the intact lung via two-photon intravital microscopy has proven a valuable method to investigate lung injury in small rodent models through characterization of inflammatory cells and vascular changes in real time. However, respiratory motion complicates the analysis of these time series images and requires selective data extraction to stabilize the image. Consequently, analysis of individual alveoli may not provide a complete picture of the integrated mechanical, vascular and inflammatory processes occurring simultaneously in the intact lung. To address these challenges, we developed a web browser-based visualization application named Alveolus Analysis to process, analyze and graphically display intravital lung microscopy data. RESULTS: The designed tool takes raw temporal image data as input, performs image preprocessing and feature extraction offline, and visualizes the extracted information in a web browser-based interface. The interface allows users to explore multiple experiments in three panels corresponding to different levels of detail: summary statistics of alveolar/neutrophil behavior, characterization of alveolar dynamics including lung edema and inflammatory cells at specific time points, and cross-experiment analysis. We performed a case study on the utility of the visualization with two members or our research team and they found the tool useful because of its ability to preprocess data consistently and visualize information in a digestible and informative format. CONCLUSIONS: Application of our software tool, Alveolus Analysis, to intravital lung microscopy data has the potential to enhance the information gained from these experiments and provide new insights into the pathologic mechanisms of inflammatory lung injury.


Assuntos
Lesão Pulmonar , Animais , Navegador , Lesão Pulmonar/patologia , Alvéolos Pulmonares/patologia , Pulmão/patologia , Microscopia Intravital
10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562995

RESUMO

Cortactin (CTTN) is an actin-binding and cytoskeletal protein that is found in abundance in the cell cortex and other peripheral structures of most cell types. It was initially described as a target for Src-mediated phosphorylation at several tyrosine sites within CTTN, and post-translational modifications at these tyrosine sites are a primary regulator of its function. CTTN participates in multiple cellular functions that require cytoskeletal rearrangement, including lamellipodia formation, cell migration, invasion, and various other processes dependent upon the cell type involved. The role of CTTN in vascular endothelial cells is particularly important for promoting barrier integrity and inhibiting vascular permeability and tissue edema. To mediate its functional effects, CTTN undergoes multiple post-translational modifications and interacts with numerous other proteins to alter cytoskeletal structures and signaling mechanisms. In the present review, we briefly describe CTTN structure, post-translational modifications, and protein binding partners and then focus on its role in regulating cellular processes and well-established functional mechanisms, primarily in vascular endothelial cells and disease models. We then provide insights into how CTTN function affects the pathophysiology of multiple lung disorders, including acute lung injury syndromes, COPD, and asthma.


Assuntos
Cortactina , Células Endoteliais , Cortactina/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Pulmão/metabolismo , Fosforilação , Tirosina/metabolismo
11.
Am J Respir Cell Mol Biol ; 64(1): 89-99, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058734

RESUMO

A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.


Assuntos
Fumar Cigarros/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Vapor do Cigarro Eletrônico/efeitos adversos , Pulmão/efeitos dos fármacos , Nicotina/efeitos adversos , Síndrome do Desconforto Respiratório/induzido quimicamente , Oxidorredutase com Domínios WW/metabolismo , Animais , Humanos , Pulmão/metabolismo , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/metabolismo , Infecções Estafilocócicas/metabolismo , Nicotiana/efeitos adversos , Produtos do Tabaco/efeitos adversos
12.
Eur Respir J ; 57(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33243842

RESUMO

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Anticorpos Monoclonais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , SARS-CoV-2
13.
Clin Sci (Lond) ; 135(7): 963-977, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33792658

RESUMO

RATIONALE: The myosin light chain kinase gene, MYLK, encodes three proteins via unique promoters, including the non-muscle isoform of myosin light chain kinase (nmMLCK), a cytoskeletal protein centrally involved in regulation of vascular integrity. As MYLK coding SNPs are associated with severe inflammatory disorders (asthma, acute respiratory distress syndrome (ARDS)), we explored clinically relevant inflammatory stimuli and promoter SNPs in nmMLCK promoter regulation. METHODS: Full-length or serially deleted MYLK luciferase reporter promoter activities were measured in human lung endothelial cells (ECs). SNP-containing non-muscle MYLK (nmMYLK) DNA fragments were generated and nmMYLK promoter binding by transcription factors (TFs) detected by protein-DNA electrophoretic mobility shift assay (EMSA). Promoter demethylation was evaluated by 5-aza-2'-deoxycytidine (5-Aza). A preclinical mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) was utilized for nmMLCK validation. RESULTS: Lung EC levels of nmMLCK were significantly increased in LPS-challenged mice and LPS, tumor necrosis factor-α (TNF-α), 18% cyclic stretch (CS) and 5-Aza each significantly up-regulated EC nmMYLK promoter activities. EC exposure to FG-4592, a prolyl hydroxylase inhibitor that increases hypoxia-inducible factor (HIF) expression, increased nmMYLK promoter activity, confirmed by HIF1α/HIF2α silencing. nmMYLK promoter deletion studies identified distal inhibitory and proximal enhancing promoter regions as well as mechanical stretch-, LPS- and TNFα-inducible regions. Insertion of ARDS-associated SNPs (rs2700408, rs11714297) significantly increased nmMYLK promoter activity via increased transcription binding (glial cells missing homolog 1 (GCM1) and intestine-specific homeobox (ISX), respectively). Finally, the MYLK rs78755744 SNP (-261G/A), residing within a nmMYLK CpG island, significantly attenuated 5-Aza-induced promoter activity. CONCLUSION: These findings indicate nmMYLK transcriptional regulation by clinically relevant inflammatory factors and ARDS-associated nmMYLK promoter variants are consistent with nmMLCK as a therapeutic target in severe inflammatory disorders.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Epigênese Genética , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Células Cultivadas , Decitabina , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Lesão Pulmonar/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Quinase de Cadeia Leve de Miosina/genética , Pneumonia , Polimorfismo de Nucleotídeo Único , Síndrome do Desconforto Respiratório/genética , Estresse Mecânico , Fator de Necrose Tumoral alfa
14.
Crit Care ; 25(1): 333, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526077

RESUMO

PURPOSE: In acute respiratory distress syndrome (ARDS), dead space fraction has been independently associated with mortality. We hypothesized that early measurement of the difference between arterial and end-tidal CO2 (arterial-ET difference), a surrogate for dead space fraction, would predict mortality in mechanically ventilated patients with ARDS. METHODS: We performed two separate exploratory analyses. We first used publicly available databases from the ALTA, EDEN, and OMEGA ARDS Network trials (N = 124) as a derivation cohort to test our hypothesis. We then performed a separate retrospective analysis of patients with ARDS using University of Chicago patients (N = 302) as a validation cohort. RESULTS: The ARDS Network derivation cohort demonstrated arterial-ET difference, vasopressor requirement, age, and APACHE III to be associated with mortality by univariable analysis. By multivariable analysis, only the arterial-ET difference remained significant (P = 0.047). In a separate analysis, the modified Enghoff equation ((PaCO2-PETCO2)/PaCO2) was used in place of the arterial-ET difference and did not alter the results. The University of Chicago cohort found arterial-ET difference, age, ventilator mode, vasopressor requirement, and APACHE II to be associated with mortality in a univariate analysis. By multivariable analysis, the arterial-ET difference continued to be predictive of mortality (P = 0.031). In the validation cohort, substitution of the arterial-ET difference for the modified Enghoff equation showed similar results. CONCLUSION: Arterial to end-tidal CO2 (ETCO2) difference is an independent predictor of mortality in patients with ARDS.


Assuntos
Dióxido de Carbono/análise , Espaço Morto Respiratório , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Estatística como Assunto/métodos , Adulto , Chicago , Estudos de Coortes , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Curva ROC , Estatística como Assunto/instrumentação , Estatística como Assunto/tendências , Estudos de Validação como Assunto
15.
Microvasc Res ; 129: 103954, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31730773

RESUMO

Group V secretory phospholipase A2 (gVPLA2) is a potent inflammatory mediator in mammalian tissues that hydrolyzes phospholipids and initiates eicosanoid biosynthesis. Previous work has demonstrated that multiple inflammatory stimuli induce its expression and secretion in several cell types, including the lung endothelium. However, little is known about the mechanism(s) by which gVPLA2 inflammatory signaling is subsequently downregulated. Therefore, in this study we characterized potential clearance mechanisms for gVPLA2 in lung endothelial cells (EC). We observed that exogenous gVPLA2 is taken up rapidly by nutrient-starved human pulmonary artery EC (HPAEC) in vitro, and its cellular expression subsequently is reduced over several hours. In parallel experiments performed in pulmonary vascular EC isolated from mice genetically deficient in gVPLA2, the degradation of exogenously applied gVPLA2 occurs in a qualitatively similar fashion. This degradation is significantly attenuated in EC treated with ammonium chloride or chloroquine, which are lysosomal inhibitors that block autophagic flux. In contrast, the proteasomal inhibitor MG132 fails to prevent the clearance of gVPLA2. Both immunofluorescence microscopy and proximity ligation assay demonstrate the co-localization of LC3 and gVPLA2 during this process, indicating the association of gVPLA2 with autophagosomes. Nutrient starvation, a known inducer of autophagy, is sufficient to stimulate gVPLA2 degradation. These results suggest that a lysosome-mediated autophagy pathway contributes to gVPLA2 clearance from lung EC. These novel observations advance our understanding of the mechanism by which this key inflammatory enzyme is downregulated in the lung vasculature.


Assuntos
Autofagia , Células Endoteliais/enzimologia , Fosfolipases A2 do Grupo V/metabolismo , Lisossomos/enzimologia , Artéria Pulmonar/enzimologia , Animais , Células Cultivadas , Estabilidade Enzimática , Fosfolipases A2 do Grupo V/deficiência , Fosfolipases A2 do Grupo V/genética , Humanos , Camundongos Knockout , Proteólise , Fatores de Tempo
17.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1118-L1126, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908935

RESUMO

Noncanonical roles for caspase-3 are emerging in the fields of cancer and developmental biology. However, little is known of nonapoptotic functions of caspase-3 in most cell types. We have recently demonstrated a disassociation between caspase-3 activation and execution of apoptosis with accompanying cytoplasmic caspase-3 sequestration and preserved endothelial barrier function. Therefore, we tested the hypothesis that nonapoptotic caspase-3 activation promotes endothelial barrier integrity. Human lung microvascular endothelial cells were exposed to thrombin, a nonapoptotic stimulus, and endothelial barrier function was assessed using electric cell-substrate impedance sensing. Actin cytoskeletal rearrangement and paracellular gap formation were assessed using phalloidin staining. Cell stiffness was evaluated using magnetic twisting cytometry. In addition, cell lysates were harvested for protein analyses. Caspase-3 was inhibited pharmacologically with pan-caspase and a caspase-3-specific inhibitor. Molecular inhibition of caspase-3 was achieved using RNA interference. Cells exposed to thrombin exhibited a cytoplasmic activation of caspase-3 with transient and nonapoptotic decrease in endothelial barrier function as measured by a drop in electrical resistance followed by a rapid recovery. Inhibition of caspases led to a more pronounced and rapid drop in thrombin-induced endothelial barrier function, accompanied by increased endothelial cell stiffness and paracellular gaps. Caspase-3-specific inhibition and caspase-3 knockdown both resulted in more pronounced thrombin-induced endothelial barrier disruption. Taken together, our results suggest cytoplasmic caspase-3 has nonapoptotic functions in human endothelium and can promote endothelial barrier integrity.


Assuntos
Caspase 3/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Mucosa Respiratória/citologia , Junções Íntimas/efeitos dos fármacos , Citoesqueleto de Actina/fisiologia , Permeabilidade Capilar/efeitos dos fármacos , Caspase 3/genética , Células Cultivadas , Impedância Elétrica , Endotélio Vascular/citologia , Humanos , Pulmão/citologia , Interferência de RNA , RNA Interferente Pequeno/genética , Trombina/farmacologia
18.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L834-L845, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30188745

RESUMO

Acute respiratory distress syndrome (ARDS) is a severe clinical condition marked by acute respiratory failure and dysregulated inflammation. Pulmonary vascular endothelial cells (PVECs) function as an important pro-inflammatory source in ARDS, suggesting that modulation of inflammatory events at the endothelial level may have a therapeutic benefit. Dipeptidyl peptidase-4 (DPP4) inhibitors, widely used for the treatment of diabetes mellitus, have been reported to have possible anti-inflammatory effects. However, the potential anti-inflammatory effects of DPP4 inhibition on PVEC function and ARDS pathophysiology are unknown. Therefore, we evaluated the effects of sitagliptin, a DPP4 inhibitor in wide clinical use, on LPS-induced lung injury in mice and in human lung ECs in vitro. In vivo, sitagliptin reduced serum DPP4 activity, bronchoalveolar lavage protein concentration, cell number, and proinflammatory cytokine levels after LPS and alleviated histological findings of lung injury. LPS decreased the expression levels of CD26/DPP4 on pulmonary epithelial cells and PVECs isolated from mouse lungs, and the effect was partially reversed by sitagliptin. In vitro, human lung microvascular ECs (HLMVECs) expressed higher levels of CD26/DPP4 than human pulmonary arterial ECs. LPS induced the release of TNFα, IL-6, and IL-8 by HLMVECs that were inhibited by sitagliptin. LPS promoted the proliferation of HLMVECs, and sitagliptin suppressed this response. However, sitagliptin failed to reverse LPS-induced permeability in cultured ECs or lung epithelial cells in vitro. In summary, sitagliptin attenuates LPS-induced lung injury in mice and exerts anti-inflammatory effects on HLMVECs. These novel observations indicate DPP4 inhibitors may have potential as therapeutic drugs for ARDS.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Lipopolissacarídeos/farmacologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/tratamento farmacológico , Fosfato de Sitagliptina/farmacologia , Animais , Lavagem Broncoalveolar/métodos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/metabolismo
19.
Am J Physiol Cell Physiol ; 310(2): C99-114, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26491047

RESUMO

Adenosine triphosphate (ATP) is a ubiquitous extracellular messenger elevated in the tumor microenvironment. ATP regulates cell functions by acting on purinergic receptors (P2X and P2Y) and activating a series of intracellular signaling pathways. We examined ATP-induced Ca(2+) signaling and its effects on antiapoptotic (Bcl-2) and proapoptotic (Bax) proteins in normal human airway epithelial cells and lung cancer cells. Lung cancer cells exhibited two phases (transient and plateau phases) of increase in cytosolic [Ca(2+)] ([Ca(2+)]cyt) caused by ATP, while only the transient phase was observed in normal cells. Removal of extracellular Ca(2+) eliminated the plateau phase increase of [Ca(2+)]cyt in lung cancer cells, indicating that the plateau phase of [Ca(2+)]cyt increase is due to Ca(2+) influx. The distribution of P2X (P2X1-7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) receptors was different between lung cancer cells and normal cells. Proapoptotic P2X7 was nearly undetectable in lung cancer cells, which may explain why lung cancer cells showed decreased cytotoxicity when treated with high concentration of ATP. The Bcl-2/Bax ratio was increased in lung cancer cells following treatment with ATP; however, the antiapoptotic protein Bcl-2 demonstrated more sensitivity to ATP than proapoptotic protein Bax. Decreasing extracellular Ca(2+) or chelating intracellular Ca(2+) with BAPTA-AM significantly inhibited ATP-induced increase in Bcl-2/Bax ratio, indicating that a rise in [Ca(2+)]cyt through Ca(2+) influx is the critical mediator for ATP-mediated increase in Bcl-2/Bax ratio. Therefore, despite high ATP levels in the tumor microenvironment, which would induce cell apoptosis in normal cells, the decreased P2X7 and elevated Bcl-2/Bax ratio in lung cancer cells may enable tumor cells to survive. Increasing the Bcl-2/Bax ratio by exposure to high extracellular ATP may, therefore, be an important selective pressure promoting transformation and cancer progression.


Assuntos
Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos
20.
Arterioscler Thromb Vasc Biol ; 35(5): 1071-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25814671

RESUMO

The vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and acute respiratory distress syndrome, because of the formation of gaps between endothelial cells. Although these disorders are leading causes of mortality in the intensive care unit, no medical therapies exist to restore endothelial cell barrier function. Recent evidence highlights a key role for the Abl family of nonreceptor tyrosine kinases in regulating vascular barrier integrity. These kinases have well-described roles in cancer progression and neuronal morphogenesis, but their functions in the vasculature have remained enigmatic until recently. The Abl family kinases, c-Abl (Abl1) and Abl related gene (Arg, Abl2), phosphorylate several cytoskeletal effectors that mediate vascular permeability, including nonmuscle myosin light chain kinase, cortactin, vinculin, and ß-catenin. They also regulate cell-cell and cell-matrix junction dynamics, and the formation of actin-based cellular protrusions in multiple cell types. In addition, both c-Abl and Arg are activated by hyperoxia and contribute to oxidant-induced endothelial cell injury. These numerous roles of Abl kinases in endothelial cells and the current clinical usage of imatinib and other Abl kinase inhibitors have spurred recent interest in repurposing these drugs for the treatment of vascular barrier dysfunction. This review will describe the structure and function of Abl kinases with an emphasis on their roles in mediating vascular barrier integrity. We will also provide a critical evaluation of the potential for exploiting Abl kinase inhibition as a novel therapy for inflammatory vascular leak syndromes.


Assuntos
Benzamidas/administração & dosagem , Terapia de Alvo Molecular/métodos , Piperazinas/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-abl/efeitos dos fármacos , Pirimidinas/administração & dosagem , Síndrome do Desconforto Respiratório/tratamento farmacológico , Sepse/tratamento farmacológico , Permeabilidade Capilar/efeitos dos fármacos , Feminino , Humanos , Mesilato de Imatinib , Masculino , Proteínas Proto-Oncogênicas c-abl/genética , Síndrome do Desconforto Respiratório/fisiopatologia , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA