Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(9): 15669-15684, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35473282

RESUMO

Time-resolved photoelectron spectroscopy provides a versatile tool for investigating electron dynamics in gaseous, liquid, and solid samples on sub-femtosecond time scales. The extraction of information from spectrograms recorded with the attosecond streak camera remains a difficult challenge. Common algorithms are highly specialized and typically computationally heavy. In this work, we apply deep neural networks to map from streaking traces to near-infrared pulses as well as electron wavepackets and extensively benchmark our results on simulated data. Additionally, we illustrate domain-shift to real-world data. We also attempt to quantify the model predictive uncertainty. Our deep neural networks display competitive retrieval quality and superior tolerance against noisy data conditions, while reducing the computational time by orders of magnitude.

2.
Nat Commun ; 9(1): 719, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459621

RESUMO

Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA