RESUMO
Argyrodite is a key structure type for ion-transporting materials. Oxide argyrodites are largely unexplored despite sulfide argyrodites being a leading family of solid-state lithium-ion conductors, in which the control of lithium distribution over a wide range of available sites strongly influences the conductivity. We present a new cubic Li-rich (>6 Li+ per formula unit) oxide argyrodite Li7SiO5Cl that crystallizes with an ordered cubic (P213) structure at room temperature, undergoing a transition at 473 K to a Li+ site disordered F4Ì 3m structure, consistent with the symmetry adopted by superionic sulfide argyrodites. Four different Li+ sites are occupied in Li7SiO5Cl (T5, T5a, T3, and T4), the combination of which is previously unreported for Li-containing argyrodites. The disordered F4Ì 3m structure is stabilized to room temperature via substitution of Si4+ with P5+ in Li6+xP1-xSixO5Cl (0.3 < x < 0.85) solid solution. The resulting delocalization of Li+ sites leads to a maximum ionic conductivity of 1.82(1) × 10-6 S cm-1 at x = 0.75, which is 3 orders of magnitude higher than the conductivities reported previously for oxide argyrodites. The variation of ionic conductivity with composition in Li6+xP1-xSixO5Cl is directly connected to structural changes occurring within the Li+ sublattice. These materials present superior atmospheric stability over analogous sulfide argyrodites and are stable against Li metal. The ability to control the ionic conductivity through structure and composition emphasizes the advances that can be made with further research in the open field of oxide argyrodites.
RESUMO
Extended anionic frameworks based on condensation of polyhedral main group non-metal anions offer a wide range of structure types. Despite the widespread chemistry and earth abundance of phosphates and silicates, there are no reports of extended ultraphosphate anions with lithium. We describe the lithium ultraphosphates Li3P5O14 and Li4P6O17 based on extended layers and chains of phosphate, respectively. Li3P5O14 presents a complex structure containing infinite ultraphosphate layers with 12-membered rings that are stacked alternately with lithium polyhedral layers. Two distinct vacant tetrahedral sites were identified at the end of two distinct finite Li6O1626- chains. Li4P6O17 features a new type of loop-branched chain defined by six PO43- tetrahedra. The ionic conductivities and electrochemical properties of Li3P5O14 were examined by impedance spectroscopy combined with DC polarization, NMR spectroscopy, and galvanostatic plating/stripping measurements. The structure of Li3P5O14 enables three-dimensional lithium migration that affords the highest ionic conductivity (8.5(5) × 10-7 S cm-1 at room temperature for bulk), comparable to that of commercialized LiPON glass thin film electrolytes, and lowest activation energy (0.43(7) eV) among all reported ternary Li-P-O phases. Both new lithium ultraphosphates are predicted to have high thermodynamic stability against oxidation, especially Li3P5O14, which is predicted to be stable to 4.8 V, significantly higher than that of LiPON and other solid electrolytes. The condensed phosphate units defining these ultraphosphate structures offer a new route to optimize the interplay of conductivity and electrochemical stability required, for example, in cathode coatings for lithium ion batteries.
RESUMO
We report a new polymorph of lithium aluminum pyrophosphate, LiAlP2O7, discovered through a computationally guided synthetic exploration of the Li-Mg-Al-P-O phase field. The new polymorph formed at 973 K, and the crystal structure, solved by single-crystal X-ray diffraction, adopts the orthorhombic space group Cmcm with a = 5.1140(9) Å, b = 8.2042(13) Å, c = 11.565(3) Å, and V = 485.22(17) Å3. It has a three-dimensional framework structure that is different from that found in other LiMIIIP2O7 materials. It transforms to the known monoclinic form (space group P21) above â¼1023 K. Density functional theory (DFT) calculations show that the new polymorph is the most stable low-temperature structure for this composition among the seven known structure types in the AIMIIIP2O7 (A = alkali metal) families. Although the bulk Li-ion conductivity is low, as determined from alternating-current impedance spectroscopy and variable-temperature static 7Li NMR spectra, a detailed analysis of the topologies of all seven structure types through bond-valence-sum mapping suggests a potential avenue for enhancing the conductivity. The new polymorph exhibits long (>4 Å) Li-Li distances, no Li vacancies, and an absence of Li pathways in the c direction, features that could contribute to the observed low Li-ion conductivity. In contrast, we found favorable Li-site topologies that could support long-range Li migration for two structure types with modest DFT total energies relative to the new polymorph. These promising structure types could possibly be accessed from innovative doping of the new polymorph.
RESUMO
The development of fast Li ion-conducting materials for use as solid electrolytes that provide sufficient electrochemical stability against electrode materials is paramount for the future of all-solid-state batteries. Advances on these fast ionic materials are dependent on building structure-ionic mobility-function relationships. Here, we exploit a series of multinuclear and multidimensional nuclear magnetic resonance (NMR) approaches, including 6Li and 31P magic angle spinning (MAS), in conjunction with density functional theory (DFT) to provide a detailed understanding of the local structure of the ultraphosphate Li3P5O14, a promising candidate for an oxide-based Li ion conductor that has been shown to be a highly conductive, energetically favorable, and electrochemically stable potential solid electrolyte. We have reported a comprehensive assignment of the ultraphosphate layer and layered Li6O16 26- chains through 31P and 6Li MAS NMR, respectively, in conjunction with DFT. The chemical shift anisotropy of the eight resonances with the lowest 31P chemical shift is significantly lower than that of the 12 remaining resonances, suggesting the phosphate bonding nature of these P sites being one that bridges to three other phosphate groups. We employed a number of complementary 6,7Li NMR techniques, including MAS variable-temperature line narrowing spectra, spin-alignment echo (SAE) NMR, and relaxometry, to quantify the lithium ion dynamics in Li3P5O14. Detailed analysis of the diffusion-induced spin-lattice relaxation data allowed for experimental verification of the three-dimensional Li diffusion previously proposed computationally. The 6Li NMR relaxation rates suggest sites Li1 and Li5 (the only five-coordinate Li site) are the most mobile and are adjacent to one another, both in the a-b plane (intralayer) and on the c-axis (interlayer). As shown in the 6Li-6Li exchange spectroscopy NMR spectra, sites Li1 and Li5 likely exchange with one another both between adjacent layered Li6O16 26- chains and through the center of the P12O36 12- rings forming the three-dimensional pathway. The understanding of the Li ion mobility pathways in high-performing solid electrolytes outlines a route for further development of such materials to improve their performance.
RESUMO
Li-containing materials providing fast ion transport pathways are fundamental in Li solid electrolytes and the future of all-solid-state batteries. Understanding these pathways, which usually benefit from structural disorder and cation/anion substitution, is paramount for further developments in next-generation Li solid electrolytes. Here, we exploit a range of variable temperature 6Li and 7Li nuclear magnetic resonance approaches to determine Li-ion mobility pathways, quantify Li-ion jump rates, and subsequently identify the limiting factors for Li-ion diffusion in Li3AlS3 and chlorine-doped analogue Li4.3AlS3.3Cl0.7. Static 7Li NMR line narrowing spectra of Li3AlS3 show the existence of both mobile and immobile Li ions, with the latter limiting long-range translational ion diffusion, while in Li4.3AlS3.3Cl0.7, a single type of fast-moving ion is present and responsible for the higher conductivity of this phase. 6Li-6Li exchange spectroscopy spectra of Li3AlS3 reveal that the slower moving ions hop between non-equivalent Li positions in different structural layers. The absence of the immobile ions in Li4.3AlS3.3Cl0.7, as revealed from 7Li line narrowing experiments, suggests an increased rate of ion exchange between the layers in this phase compared with Li3AlS3. Detailed analysis of spin-lattice relaxation data allows extraction of Li-ion jump rates that are significantly increased for the doped material and identify Li mobility pathways in both materials to be three-dimensional. The identification of factors limiting long-range translational Li diffusion and understanding the effects of structural modification (such as anion substitution) on Li-ion mobility provide a framework for the further development of more highly conductive Li solid electrolytes.
RESUMO
A tetragonal argyrodite with >7 mobile cations, Li7Zn0.5SiS6, is experimentally realized for the first time through solid state synthesis and exploration of the Li-Zn-Si-S phase diagram. The crystal structure of Li7Zn0.5SiS6 was solved ab initio from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. Li7Zn0.5SiS6 adopts a tetragonal I4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered F43m structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn2+ into the Li sublattice and enables a range of possible jump processes. Zn2+ occupies the 48h T5 site in the high-temperature F43m structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in I4 Li7Zn0.5SiS6. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10-7 S cm-1 at room temperature and 4.3(4) × 10-4 S cm-1 at 503 K. The transition between the ordered I4 and disordered F43m structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn2+ exercises dramatic control of Li order in Li7Zn0.5SiS6 yielding a previously unseen distribution of Li sites, expanding our understanding of structure-property relationships in argyrodite materials.
RESUMO
Magic angle spinning nuclear magnetic resonance spectroscopy experiments are widely employed in the characterization of solid media. The approach is incredibly versatile but deleteriously suffers from low sensitivity, which may be alleviated by adopting dynamic nuclear polarization methods, resulting in large signal enhancements. Paramagnetic metal ions such as Gd3+ have recently shown promising results as polarizing agents for 1H, 13C, and 15N nuclear spins. We demonstrate that the widely available and inexpensive chemical agent Gd(NO3)3 achieves significant signal enhancements for the 13C and 15N nuclear sites of [2-13C,15N]glycine at 9.4 T and â¼105 K. Analysis of the signal enhancement profiles at two magnetic fields, in conjunction with electron paramagnetic resonance data, reveals the solid effect to be the dominant signal enhancement mechanism. The signal amplification obtained paves the way for efficient dynamic nuclear polarization without the need for challenging synthesis of Gd3+ polarizing agents.
Assuntos
Campos Magnéticos , Metais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Íons , Espectroscopia de Ressonância Magnética/métodosRESUMO
Metal-organic frameworks (MOFs) are excellent platforms to design hybrid electrolytes for Li batteries with liquid-like transport and stability against lithium dendrites. We report on Li+ dynamics in quasi-solid electrolytes consisting in Mg-MOF-74 soaked with LiClO4-propylene carbonate (PC) and LiClO4-ethylene carbonate (EC)/dimethyl carbonate (DMC) solutions by combining studies of ion conductivity, nuclear magnetic resonance (NMR) characterization, and spin relaxometry. We investigate nanoconfinement of liquid inside MOFs to characterize the adsorption/solvation mechanism at the basis of Li+ migration in these materials. NMR supports that the liquid is nanoconfined in framework micropores, strongly interacting with their walls and that the nature of the solvent affects Li+ migration in MOFs. Contrary to the "free'' liquid electrolytes, faster ion dynamics and higher Li+ mobility take place in LiClO4-PC electrolytes when nanoconfined in MOFs demonstrating superionic conductor behavior (conductivity σrt > 0.1 mS cm-1, transport number tLi+ > 0.7). Such properties, including a more stable Li electrodeposition, make MOF-hybrid electrolytes promising for high-power and safer lithium-ion batteries.
RESUMO
A hexagonal analogue, Li6SiO4Cl2, of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation-experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li6SiO4Cl2 as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of â¼10-10 S cm-1 at room temperature and the predicted hexagonal argyrodite structure above an order-disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li6SiO4Cl2 and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes.
RESUMO
Mixed anion materials and anion doping are very promising strategies to improve solid-state electrolyte properties by enabling an optimized balance between good electrochemical stability and high ionic conductivity. In this work, we present the discovery of a novel lithium aluminum sulfide-chloride phase, obtained by substitution of chloride for sulfur in Li3AlS3 and Li5AlS4 materials. The structure is strongly affected by the presence of chloride anions on the sulfur site, as the substitution was shown to be directly responsible for the stabilization of a higher symmetry phase presenting a large degree of cationic site disorder, as well as disordered octahedral lithium vacancies. The effect of disorder on the lithium conductivity properties was assessed by a combined experimental-theoretical approach. In particular, the conductivity is increased by a factor 103 compared to the pure sulfide phase. Although it remains moderate (10-6 S·cm-1), ab initio molecular dynamics and maximum entropy (applied to neutron diffraction data) methods show that disorder leads to a 3D diffusion pathway, where Li atoms move thanks to a concerted mechanism. An understanding of the structure-property relationships is developed to determine the limiting factor governing lithium ion conductivity. This analysis, added to the strong step forward obtained in the determination of the dimensionality of diffusion, paves the way for accessing even higher conductivity in materials comprising an hcp anion arrangement.
RESUMO
The selection of the elements to combine delimits the possible outcomes of synthetic chemistry because it determines the range of compositions and structures, and thus properties, that can arise. For example, in the solid state, the elemental components of a phase field will determine the likelihood of finding a new crystalline material. Researchers make these choices based on their understanding of chemical structure and bonding. Extensive data are available on those element combinations that produce synthetically isolable materials, but it is difficult to assimilate the scale of this information to guide selection from the diversity of potential new chemistries. Here, we show that unsupervised machine learning captures the complex patterns of similarity between element combinations that afford reported crystalline inorganic materials. This model guides prioritisation of quaternary phase fields containing two anions for synthetic exploration to identify lithium solid electrolytes in a collaborative workflow that leads to the discovery of Li3.3SnS3.3Cl0.7. The interstitial site occupancy combination in this defect stuffed wurtzite enables a low-barrier ion transport pathway in hexagonal close-packing.
RESUMO
With the goal of finding new lithium solid electrolytes by a combined computational-experimental method, the exploration of the Li-Al-O-S phase field resulted in the discovery of a new sulfide Li3AlS3. The structure of the new phase was determined through an approach combining synchrotron X-ray and neutron diffraction with 6Li and 27Al magic-angle spinning nuclear magnetic resonance spectroscopy and revealed to be a highly ordered cationic polyhedral network within a sulfide anion hcp-type sublattice. The originality of the structure relies on the presence of Al2S6 repeating dimer units consisting of two edge-shared Al tetrahedra. We find that, in this structure type consisting of alternating tetrahedral layers with Li-only polyhedra layers, the formation of these dimers is constrained by the Al/S ratio of 1/3. Moreover, by comparing this structure to similar phases such as Li5AlS4 and Li4.4Al0.2Ge0.3S4 ((Al + Ge)/S = 1/4), we discovered that the AlS4 dimers not only influence atomic displacements and Li polyhedral distortions but also determine the overall Li polyhedral arrangement within the hcp lattice, leading to the presence of highly ordered vacancies in both the tetrahedral and Li-only layer. AC impedance measurements revealed a low lithium mobility, which is strongly impacted by the presence of ordered vacancies. Finally, a composition-structure-property relationship understanding was developed to explain the extent of lithium mobility in this structure type.