Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L107-L120, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35670484

RESUMO

Despite decades of research, studies investigating the physiological alterations caused by an acute bout of inflammation induced by exposing the lung to lipopolysaccharide have yielded inconsistent results. This can be attributed to small effects and/or a lack of fitted physiological testing. Herein, a comprehensive investigation of lung mechanics was conducted on 270 male C57BL/6 mice at 24, 48, or 96 h after an intranasal exposure to saline or lipopolysaccharide at either 1 or 3 mg/kg (30 mice per group). Traditional techniques that probe the lung using small-amplitude perturbations (i.e., oscillometry) were used, together with less conventional and new techniques that probe the lung using maneuvers of large amplitudes. The latter include a partial and a full-range pressure-volume maneuvers to measure quasi-static elastance, compliance, total lung volume, vital capacity, and residual volume. The results demonstrate that lung mechanics assessed by oscillometry was only slightly affected by lipopolysaccharide, confirming previous findings. In contradistinction, lipopolysaccharide markedly altered mechanics when the lung was probed with maneuvers of large amplitudes. With the dose of 3 mg/kg at the peak of inflammation (48 h postexposure), lipopolysaccharide increased quasi-static elastance by 26.7% (P < 0.0001) and decreased compliance by 34.5% (P < 0.0001). It also decreased lung volumes, including total lung capacity, vital capacity, and residual volume by 33.3%, 30.5%, and 43.3%, respectively (all P < 0.0001). These newly reported physiological alterations represent sensitive outcomes to efficiently evaluate countermeasures (e.g., drugs) in the context of several lung diseases.


Assuntos
Lipopolissacarídeos , Respiração com Pressão Positiva , Animais , Inflamação , Lipopolissacarídeos/farmacologia , Pulmão/fisiologia , Complacência Pulmonar , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia
2.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L294-L304, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936511

RESUMO

There are renewed interests in using the parameter K of Salazar-Knowles' equation to assess lung tissue compliance. K either decreases or increases when the lung's parenchyma stiffens or loosens, respectively. However, whether K is affected by other common features of respiratory diseases, such as inflammation and airway smooth muscle (ASM) contraction, is unknown. Herein, male C57BL/6 mice were treated intranasally with either saline or lipopolysaccharide (LPS) at 1 mg/kg to induce pulmonary inflammation. They were then subjected to either a multiple or a single-dose challenge with methacholine to activate ASM to different degrees. A quasi-static pressure-driven partial pressure-volume (P-V) maneuver was performed before and after methacholine. The Salazar-Knowles' equation was then fitted to the deflation limb of the P-V loop to obtain K, as well as the parameter A, an estimate of lung volume (inspiratory capacity). The fitted curve was also used to derive the quasi-static elastance (Est) at 5 cmH2O. The results demonstrate that LPS and both methacholine challenges increased Est. LPS also decreased A, but did not affect K. In contradistinction, methacholine decreased both A and K in the multiple-dose challenge, whereas it decreased K but not A in the single-dose challenge. These results suggest that LPS increases Est by reducing the open lung volume (A) and without affecting tissue compliance (K), whereas methacholine increases Est by decreasing tissue compliance with or without affecting lung volume. We conclude that lung tissue compliance, assessed using the parameter K of Salazar-Knowles' equation, is insensitive to inflammation but sensitive to ASM contraction.


Assuntos
Lipopolissacarídeos , Pulmão , Resistência das Vias Respiratórias , Animais , Inflamação , Lipopolissacarídeos/farmacologia , Complacência Pulmonar , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Mecânica Respiratória
3.
Exp Lung Res ; 47(8): 390-401, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34541979

RESUMO

AIM OF THE STUDY: The current gold standard to assess respiratory mechanics in mice is oscillometry, a technique from which several readouts of the respiratory system can be deduced, such as resistance and elastance. However, these readouts are often not altered in mouse models of asthma. This is in stark contrast with humans, where asthma is generally associated with alterations when assessed by either oscillometry or other techniques. In the present study, we have used double-chamber plethysmography (DCP) to evaluate the breathing pattern and the degree of airflow obstruction in a mouse model of asthma. MATERIALS AND METHODS: Female C57BL/6 and BALB/c mice were studied at day 1 using DCP, as well as at day 11 using both DCP and oscillometry following a once-daily exposure to either house-dust mite (HDM) or saline for 10 consecutive days. RESULTS: All DCP readouts used to describe either the breathing pattern (e.g., tidal volume and breathing frequency) or the degree of airflow obstruction (e.g., specific airway resistance) were different between mouse strains at day 1. Most of these strain differences persisted at day 11. Most oscillometric readouts (e.g., respiratory system resistance and elastance) were also different between strains. Changes caused by HDM were obvious with DCP, including decreases in tidal volume, minute ventilation, inspiratory time and mid-tidal expiratory flow and an increase in specific airway resistance. HDM also caused some strain specific alterations in breathing pattern, including increases in expiratory time and end inspiratory pause, which were only observed in C57BL/6 mice. Oscillometry also detected a small but significant increase in tissue elastance in HDM versus saline-exposed mice. CONCLUSIONS: DCP successfully identified differences between C57BL/6 and BALB/c mice, as well as alterations in mice from both strains exposed to HDM. We conclude that, depending on the study purpose, DCP may sometimes outweigh oscillometry.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Animais , Asma/diagnóstico , Feminino , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Oscilometria , Pletismografia
4.
Respir Physiol Neurobiol ; 304: 103938, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716869

RESUMO

BALB/c mice from both sexes underwent one of two nebulized methacholine challenges that were preceded by a period of 20 min either with or without tone induced by repeated contractions of the airway smooth muscle. Impedance was monitored throughout and the constant phase model was used to dissociate the impact of tone on conducting airways (RN - Newtonian resistance) versus the lung periphery (G and H - tissue resistance and elastance). The effect of tone on smooth muscle contractility was also tested on excised tracheas. While tone markedly potentiated the methacholine-induced gains in H and G in both sexes, the gain in RN was only potentiated in males. The contractility of female and male tracheas was also potentiated by tone. Inversely, the methacholine-induced gain in hysteresivity (G/H) was mitigated by tone in both sexes. Therefore, the tone-induced muscle hypercontractility impacts predominantly the lung periphery in vivo, but also promotes further airway narrowing in males while protecting against narrowing heterogeneity in both sexes.


Assuntos
Pulmão , Músculo Liso , Animais , Feminino , Masculino , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/fisiologia , Traqueia
5.
Front Physiol ; 12: 698019, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267677

RESUMO

The contractility of airway smooth muscle (ASM) is labile. Although this feature can greatly modulate the degree of airway responsiveness in vivo, the extent by which ASM's contractility is affected by pulmonary allergic inflammation has never been compared between strains of mice exhibiting a different susceptibility to develop airway hyperresponsiveness (AHR). Herein, female C57BL/6 and BALB/c mice were treated intranasally with either saline or house dust mite (HDM) once daily for 10 consecutive days to induce pulmonary allergic inflammation. The doses of HDM were twice greater in the less susceptible C57BL/6 strain. All outcomes, including ASM contractility, were measured 24 h after the last HDM exposure. As expected, while BALB/c mice exposed to HDM became hyperresponsive to a nebulized challenge with methacholine in vivo, C57BL/6 mice remained normoresponsive. The lack of AHR in C57BL/6 mice occurred despite exhibiting more than twice as much inflammation than BALB/c mice in bronchoalveolar lavages, as well as similar degrees of inflammatory cell infiltrates within the lung tissue, goblet cell hyperplasia and thickening of the epithelium. There was no enlargement of ASM caused by HDM exposure in either strain. Unexpectedly, however, excised tracheas derived from C57BL/6 mice exposed to HDM demonstrated a decreased contractility in response to both methacholine and potassium chloride, while tracheas from BALB/c mice remained normocontractile following HDM exposure. These results suggest that the lack of AHR in C57BL/6 mice, at least in an acute model of HDM-induced pulmonary allergic inflammation, is due to an acquired ASM hypocontractility.

6.
J Appl Physiol (1985) ; 130(5): 1555-1561, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33856257

RESUMO

The airway smooth muscle undergoes an elastic transition during a sustained contraction, characterized by a gradual decrease in hysteresivity caused by a relatively greater rate of increase in elastance than resistance. We recently demonstrated that these mechanical changes are more likely to persist after a large strain when they are acquired in dynamic versus static conditions; as if the microstructural adaptations liable for the elastic transition are more flexible when they evolve in dynamic conditions. The extent of this flexibility is undefined. Herein, contracted ovine tracheal smooth muscle strips were kept in dynamic conditions simulating tidal breathing (sinusoidal length oscillations at 5% amplitude) and then subjected to simulated deep inspirations (DI). Each DI was straining the muscle by either 10%, 20%, or 30% and was imposed at either 2, 5, 10, or 30 min after the preceding DI. The goal was to assess whether and the extent by which the time-dependent decrease in hysteresivity is preserved following the DI. The results show that the time-dependent decrease in hysteresivity seen pre-DI was preserved after a strain of 10%, but not after a strain of 20% or 30%. This suggests that the microstructural adaptations liable for the elastic transition withstood a strain at least twofold greater than the oscillating strain that pertained during their evolution (10% vs. 5%). We propose that a muscle adapting in dynamic conditions forges microstructures exhibiting a substantial degree of flexibility.NEW & NOTEWORTHY This study confirms that airway smooth muscle undergoes an elastic transition during a sustained contraction even when it operates in dynamic conditions simulating breathing at tidal volume. It also demonstrates that the microstructural adaptations liable for this elastic transition withstand a strain that is at least twice as large as the oscillating strain that pertains during their evolution. This degree of flexibility might be an asset with major significant impact for a tissue such as the airway smooth muscle that displays an everchanging shape due to breathing.


Assuntos
Inalação , Traqueia , Adaptação Fisiológica , Resistência das Vias Respiratórias , Animais , Contração Muscular , Músculo Liso , Respiração , Ovinos
7.
Sci Rep ; 11(1): 7777, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833346

RESUMO

Due to frequent and often severe lung affections caused by COVID-19, murine models of acute respiratory distress syndrome (ARDS) are increasingly used in experimental lung research. The one induced by a single lipopolysaccharide (LPS) exposure is practical. However, whether it is preferable to administer LPS intranasally or intratracheally remains an open question. Herein, female C57Bl/6 J mice were exposed intranasally or intratracheally to one dose of either saline or 3 mg/kg of LPS. They were studied 24 h later. The groups treated with LPS, either intranasally or intratracheally, exhibited a pronounced neutrophilic inflammation, signs of lung tissue damage and protein extravasation into the alveoli, and mild lung dysfunction. The magnitude of the response was generally not different between groups exposed intranasally versus intratracheally. However, the variability of some the responses was smaller in the LPS-treated groups exposed intranasally versus intratracheally. Notably, the saline-treated mice exposed intratracheally demonstrated a mild neutrophilic inflammation and alterations of the airway epithelium. We conclude that an intranasal exposure is as effective as an intratracheal exposure in a murine model of ARDS induced by LPS. Additionally, the groups exposed intranasally demonstrated less variability in the responses to LPS and less complications associated with the sham procedure.


Assuntos
Inflamação/induzido quimicamente , Lipopolissacarídeos/efeitos adversos , Pulmão/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Administração Intranasal , Animais , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/análise , Síndrome do Desconforto Respiratório/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA