RESUMO
Aminoacyl-tRNA synthetases are fundamental to the translation machinery with emerging roles in transcriptional regulation. Previous cellular studies have demonstrated tyrosyl-tRNA synthetase (YARS1 or TyrRS) as a stress response protein through its cytosol-nucleus translocation to maintain cellular homeostasis. Here, we established a mouse model with a disrupted TyrRS nuclear localization signal, revealing its systemic impact on metabolism. Nuclear TyrRS deficiency (YarsΔNLS) led to reduced lean mass, reflecting a mild developmental defect, and reduced fat mass, possibly due to increased energy expenditure. Consistently, YarsΔNLS mice exhibit improved insulin sensitivity and reduced insulin levels, yet maintain normoglycemia, indicative of enhanced insulin action. Notably, YarsΔNLS mice also develop progressive hearing loss. These findings underscore the crucial function of nuclear TyrRS in the maintenance of fat storage and hearing and suggest that aminoacyl-tRNA synthetases' regulatory roles can affect metabolic pathways and tissue-specific health. This work broadens our understanding of how protein synthesis interconnects metabolic regulation to ensure energy efficiency.
RESUMO
Selective neuronal loss is a hallmark of neurodegenerative diseases, which, counterintuitively, are often caused by mutations in widely expressed genes. Charcot-Marie-Tooth (CMT) diseases are the most common hereditary peripheral neuropathies, for which there are no effective therapies. A subtype of these diseases--CMT type 2D (CMT2D)--is caused by dominant mutations in GARS, encoding the ubiquitously expressed enzyme glycyl-transfer RNA (tRNA) synthetase (GlyRS). Despite the broad requirement of GlyRS for protein biosynthesis in all cells, mutations in this gene cause a selective degeneration of peripheral axons, leading to deficits in distal motor function. How mutations in GlyRS (GlyRS(CMT2D)) are linked to motor neuron vulnerability has remained elusive. Here we report that GlyRS(CMT2D) acquires a neomorphic binding activity that directly antagonizes an essential signalling pathway for motor neuron survival. We find that CMT2D mutations alter the conformation of GlyRS, enabling GlyRS(CMT2D) to bind the neuropilin 1 (Nrp1) receptor. This aberrant interaction competitively interferes with the binding of the cognate ligand vascular endothelial growth factor (VEGF) to Nrp1. Genetic reduction of Nrp1 in mice worsens CMT2D symptoms, whereas enhanced expression of VEGF improves motor function. These findings link the selective pathology of CMT2D to the neomorphic binding activity of GlyRS(CMT2D) that antagonizes the VEGF-Nrp1 interaction, and indicate that the VEGF-Nrp1 signalling axis is an actionable target for treating CMT2D.
Assuntos
Ligação Competitiva , Doença de Charcot-Marie-Tooth/metabolismo , Glicina-tRNA Ligase/metabolismo , Animais , Axônios/enzimologia , Axônios/metabolismo , Axônios/patologia , Linhagem Celular , Sobrevivência Celular , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Feminino , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/genética , Ligantes , Masculino , Camundongos , Modelos Moleculares , Neurônios Motores/enzimologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Destreza Motora/efeitos dos fármacos , Mutação/genética , Neuropilina-1/deficiência , Neuropilina-1/genética , Neuropilina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/uso terapêuticoRESUMO
Various stress conditions are signaled through phosphorylation of translation initiation factor eukaryotic initiation factor 2α (eIF2α) to inhibit global translation while selectively activating transcription factor ATF4 to aid cell survival and recovery. However, this integrated stress response is acute and cannot resolve lasting stress. Here, we report that tyrosyl-tRNA synthetase (TyrRS), a member of the aminoacyl-tRNA synthetase family that responds to diverse stress conditions through cytosol-nucleus translocation to activate stress-response genes, also inhibits global translation. However, it occurs at a later stage than eIF2α/ATF4 and mammalian target of rapamycin (mTOR) responses. Excluding TyrRS from the nucleus over-activates translation and increases apoptosis in cells under prolonged oxidative stress. Nuclear TyrRS transcriptionally represses translation genes by recruiting TRIM28 and/or NuRD complex. We propose that TyrRS, possibly along with other family members, can sense a variety of stress signals through intrinsic properties of this enzyme and strategically located nuclear localization signal and integrate them by nucleus translocation to effect protective responses against chronic stress.
Assuntos
Tirosina-tRNA Ligase , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Transporte Proteico , Fosforilação , Sinais de Localização Nuclear , Estresse OxidativoRESUMO
[This corrects the article DOI: 10.3389/fonc.2021.696512.].
RESUMO
BACKGROUND: Citarinostat (CC-96241; previously ACY-241), an oral inhibitor of histone deacetylases (HDACs) with selectivity for HDAC6, has demonstrated synergistic anticancer activity with paclitaxel in multiple solid tumor models. Combination therapy using citarinostat with paclitaxel was evaluated in this phase Ib 3 + 3 dose-escalation study in patients with advanced solid tumors. METHODS: Patients with previously treated advanced solid tumors received citarinostat 180, 360, or 480 mg once daily on days 1 to 21 plus paclitaxel 80 mg/m2 on days 1, 8, and 15 of 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was determination of the maximum tolerated dose (MTD). Secondary endpoints included safety, antitumor activity, pharmacokinetics, and pharmacodynamics. RESULTS: Twenty patients were enrolled and received study treatment; 15 had received prior taxane therapy. No dose-limiting toxicities were reported at any dose; therefore, the MTD was not identified. Citarinostat 360 vs 480 mg was associated with reduced incidence and severity of neutropenia. Three patients experienced a confirmed partial response and 13 achieved stable disease. Pharmacokinetic parameters were linear up to citarinostat 360 mg, the dose at which the highest levels of histone and tubulin acetylation were observed in peripheral blood mononuclear cells. CONCLUSIONS: The combination of citarinostat plus paclitaxel showed an acceptable safety profile, with no unexpected or dose-limiting toxicities and potential evidence of antitumor activity in patients with heavily pretreated advanced solid tumors. Citarinostat 360 mg once daily is considered the recommended phase II dose for use in combination with paclitaxel 80 mg/m2 every 3 of 4 weeks. This trial is registered on ClinicalTrials.gov (NCT02551185).
RESUMO
BACKGROUND: Histone deacetylase (HDAC) overexpression has been documented in various cancers and may be associated with worse outcomes. Data from early-phase studies of advanced non-small cell lung cancer (NSCLC) suggest encouraging antitumor activity with the combination of an HDAC inhibitor and either platinum-based chemotherapy or an EGFR inhibitor; however, toxicity is a limiting factor in the use of pan-HDAC inhibitors. Selective inhibition of HDAC6 may represent a potential therapeutic target and preclinical studies revealed immunomodulatory effects with HDAC6 inhibition, suggesting the potential for combination with immune checkpoint inhibitors. This phase Ib, multicenter, single-arm, open-label, dose-escalation study investigated the HDAC6 inhibitor ACY-241 (citarinostat) plus nivolumab in patients with previously treated advanced NSCLC who had not received a prior HDAC or immune checkpoint inhibitor. METHODS: The orally administered ACY-241 dose was escalated (180, 360, or 480 mg once daily). Nivolumab was administered at 240 mg (day 15 of cycle 1, then every 2 weeks thereafter). The primary endpoint was to determine the maximum tolerated dose (MTD) of ACY-241 plus nivolumab. Secondary endpoints included safety, tolerability, and preliminary antitumor activity. Pharmacodynamics was an exploratory endpoint. RESULTS: A total of 18 patients were enrolled, with 17 patients treated. No dose-limiting toxicities (DLTs) occurred with ACY-241 at 180 or 360 mg; 2 DLTs occurred at 480 mg. The MTD of ACY-241 was 360 mg. The most common grade ≥ 3 treatment-emergent adverse events were dyspnea (n = 3; 18%) and pneumonia (n = 3; 18%). At the 180-mg dose, 1 complete response and 2 partial responses (PRs) were observed. At the 360-mg dose, 3 PRs were observed; 1 patient achieved stable disease (SD) and 1 experienced progressive disease (PD). At the 480-mg dose, no responses were observed; 1 patient achieved SD and 3 experienced PD. Acetylation analyses revealed transient increases in histone and tubulin acetylation levels following treatment. An increase in infiltrating total CD3+ T cells was observed following treatment. CONCLUSIONS: The study identified an MTD for ACY-241 plus nivolumab and the data suggest that the combination may be feasible in patients with advanced NSCLC. Responses were observed in patients with advanced NSCLC. CLINICAL TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT02635061 (identifier, NCT02635061).
RESUMO
Antitumor effects of the toll-like receptor 7 (TLR7) agonist, 852A, were evaluated. Supernatants from human peripheral blood mononuclear cells (PBMC) stimulated with 852A inhibited the proliferation of tumor cell lines Hs294T and 769-P but had no effect on others (786-O and Caki-1). Because addition of 852A directly to the Hs294T cells did not inhibit their proliferation, the mechanism(s) of inhibition of tumor cell proliferation was investigated. Low nanomolar concentrations of 852A stimulated the production of interferon-alpha (IFN-alpha), IFN-inducible protein-10 (IP-10), interleukin-1 receptor antagonist (IL-1Ra), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) from human PBMCs. Cytokines stimulated by submicromolar concentrations of 852A were sufficient to inhibit Hs294T proliferation. At higher concentrations (3-30 microM), 852A induced the production of IL-12p70, IL-18, and IFN-gamma. PBMC cultures depleted of plasmacytoid dendritic cells (pDC) did not produce IFN-alpha, and their conditioned medium did not inhibit Hs294T proliferation. Anti-IFN-alpha/beta receptor (IFNAR) and anti-IFN-alpha antibodies partially abrogated Hs294T proliferation inhibition by 852A-stimulated PBMC supernatants, whereas separate neutralization of TRAIL, tumor necrosis factor-alpha (TNF-alpha, IFN-gamma, IFN-beta, or IFN-omega had no effect. In vivo, six doses of 852A administration significantly delayed the onset of lung colonies in a B16 melanoma model. Thus, the results demonstrate that the TLR7 agonist 852A inhibits in vitro proliferation of some tumor cells in a pDC-dependent and IFN-alpha-dependent manner and can delay tumor growth in vivo.
Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Neoplasias/patologia , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Receptor 7 Toll-Like/agonistas , Aminoquinolinas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Humanos , Imiquimode , Leucócitos Mononucleares/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Melanoma/patologia , Camundongos , Oligodesoxirribonucleotídeos/farmacologia , Frações Subcelulares/efeitos dos fármacos , Receptor Toll-Like 9/agonistasRESUMO
BACKGROUND: The finding of hemizygous or homozygous deletions at band 14 on chromosome 13 in a variety of neoplasms suggests the presence of a tumor-suppressor locus telomeric to the RB1 gene. METHODS: We studied samples from 216 patients with various types of sporadic tumors or idiopathic pancytopenia, peripheral-blood samples from 109 patients with familial cancer or multiple cancers, and control blood samples from 475 healthy people or patients with diseases other than cancer. We performed functional studies of cell lines lacking ARLTS1 expression with the use of both the full-length ARLTS1 gene and a truncated variant. RESULTS: We found a gene at 13q14, ARLTS1, a member of the ADP-ribosylation factor family, with properties of a tumor-suppressor gene. We analyzed 800 DNA samples from tumors and blood cells from patients with sporadic or familial cancer and controls and found that the frequency of a nonsense polymorphism, G446A (Trp149Stop), was similar in controls and patients with sporadic tumors but was significantly more common among patients with familial cancer than among those in the other two groups (P=0.02; odds ratio, 5.7; 95 percent confidence interval, 1.3 to 24.8). ARLTS1 was down-regulated by promoter methylation in 25 percent of the primary tumors we analyzed. Transfection of wild-type ARLTS1 into A549 lung-cancer cells suppressed tumor formation in immunodeficient mice and induced apoptosis, whereas transfection of truncated ARLTS1 had a limited effect on apoptosis and tumor suppression. Microarray analysis revealed that the wild-type and Trp149Stop-transfected clones had different expression profiles. CONCLUSIONS: A genetic variant of ARLTS1 predisposes patients to familial cancer.
Assuntos
Fatores de Ribosilação do ADP/genética , Cromossomos Humanos Par 13 , Genes Supressores de Tumor , Mutação em Linhagem Germinativa , Neoplasias/genética , Polimorfismo Genético , Fatores de Ribosilação do ADP/metabolismo , Animais , Deleção Cromossômica , Códon sem Sentido , Metilação de DNA , Análise Mutacional de DNA , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Nus , Análise de Sequência com Séries de Oligonucleotídeos , Pancitopenia/genética , Linhagem , RNA Mensageiro/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
Mammalian cell culture systems are used predominantly for the production of therapeutic monoclonal antibody (mAb) products. A number of alternative platforms, such as Pichia engineered with a humanized N-linked glycosylation pathway, have recently been developed for the production of mAbs. The glycosylation profiles of mAbs produced in glycoengineered Pichia are similar to those of mAbs produced in mammalian systems. This report presents for the first time the comprehensive characterization of an anti-human epidermal growth factor receptor 2 (HER2) mAb produced in a glycoengineered Pichia, and a study comparing the anti-HER2 from Pichia, which had an amino acid sequence identical to trastuzumab, with trastuzumab. The comparative study covered a full spectrum of preclinical evaluation, including bioanalytical characterization, in vitro biological functions, in vivo anti-tumor efficacy and pharmacokinetics in both mice and non-human primates. Cell signaling and proliferation assays showed that anti-HER2 from Pichia had antagonist activities comparable to trastuzumab. However, Pichia-produced material showed a 5-fold increase in binding affinity to FcγIIIA and significantly enhanced antibody dependant cell-mediated cytotoxicity (ADCC) activity, presumably due to the lack of fucose on N-glycans. In a breast cancer xenograft mouse model, anti-HER2 was comparable to trastuzumab in tumor growth inhibition. Furthermore, comparable pharmacokinetic profiles were observed for anti-HER2 and trastuzumab in both mice and cynomolgus monkeys. We conclude that glycoengineered Pichia provides an alternative production platform for therapeutic mAbs and may be of particular interest for production of antibodies for which ADCC is part of the clinical mechanism of action.
Assuntos
Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais/imunologia , Pichia/genética , Receptor ErbB-2/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Área Sob a Curva , Ligação Competitiva/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Fucose/metabolismo , Engenharia Genética , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Pichia/metabolismo , Polissacarídeos/metabolismo , Ligação Proteica/imunologia , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacologia , Trastuzumab , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We report here that miR-155 and miR-125b play a role in innate immune response. LPS stimulation of mouse Raw 264.7 macrophages resulted in the up-regulation of miR-155 and down-regulation of miR-125b levels. The same changes also occurred when C57BL/6 mice were i.p. injected with LPS. Furthermore, the levels of miR-155 and miR-125b in Raw 264.7 cells displayed oscillatory changes in response to TNF-alpha. These changes were impaired by pretreating the cells with the proteasome inhibitor MG-132, suggesting that these two microRNAs (miRNAs) may be at least transiently under the direct control of NF-kappaB transcriptional activity. We show that miR-155 most probably directly targets transcript coding for several proteins involved in LPS signaling such as the Fas-associated death domain protein (FADD), IkappaB kinase epsilon (IKKepsilon), and the receptor (TNFR superfamily)-interacting serine-threonine kinase 1 (Ripk1) while enhancing TNF-alpha translation. In contrast, miR-125b targets the 3'-untranslated region of TNF-alpha transcripts; therefore, its down-regulation in response to LPS may be required for proper TNF-alpha production. Finally, Emu-miR-155 transgenic mice produced higher levels of TNF-alpha when exposed to LPS and were hypersensitive to LPS/d-galactosamine-induced septic shock. Altogether, our data suggest that the LPS/TNF-alpha-dependent regulation of miR-155 and miR-125b may be implicated in the response to endotoxin shock, thus offering new targets for drug design.
Assuntos
Lipopolissacarídeos/administração & dosagem , MicroRNAs/biossíntese , Choque Séptico/imunologia , Choque Séptico/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Regulação para Baixo/imunologia , Humanos , Células Jurkat , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/antagonistas & inibidores , MicroRNAs/fisiologia , Fator de Necrose Tumoral alfa/administração & dosagem , Fator de Necrose Tumoral alfa/biossíntese , Regulação para CimaRESUMO
A large number of tiny noncoding RNAs have been cloned and named microRNAs (miRs). Recently, we have reported that miR-15a and miR-16a, located at 13q14, are frequently deleted and/or down-regulated in patients with B cell chronic lymphocytic leukemia, a disorder characterized by increased survival. To further investigate the possible involvement of miRs in human cancers on a genome-wide basis, we have mapped 186 miRs and compared their location to the location of previous reported nonrandom genetic alterations. Here, we show that miR genes are frequently located at fragile sites, as well as in minimal regions of loss of heterozygosity, minimal regions of amplification (minimal amplicons), or common breakpoint regions. Overall, 98 of 186 (52.5%) of miR genes are in cancer-associated genomic regions or in fragile sites. Moreover, by Northern blotting, we have shown that several miRs located in deleted regions have low levels of expression in cancer samples. These data provide a catalog of miR genes that may have roles in cancer and argue that the full complement of miRs in a genome may be extensively involved in cancers.
Assuntos
Sítios Frágeis do Cromossomo/genética , Genoma Humano , MicroRNAs/genética , Neoplasias/genética , Mapeamento Cromossômico , Clonagem Molecular , Bases de Dados de Ácidos Nucleicos , Genes Homeobox , Marcadores Genéticos , Humanos , Perda de Heterozigosidade , Família Multigênica , PubMedRESUMO
Micro-RNAs (miR genes) are a large family of highly conserved noncoding genes thought to be involved in temporal and tissue-specific gene regulation. MiRs are transcribed as short hairpin precursors ( approximately 70 nt) and are processed into active 21- to 22-nt RNAs by Dicer, a ribonuclease that recognizes target mRNAs via base-pairing interactions. Here we show that miR15 and miR16 are located at chromosome 13q14, a region deleted in more than half of B cell chronic lymphocytic leukemias (B-CLL). Detailed deletion and expression analysis shows that miR15 and miR16 are located within a 30-kb region of loss in CLL, and that both genes are deleted or down-regulated in the majority ( approximately 68%) of CLL cases.
Assuntos
Cromossomos Humanos Par 13/genética , Deleção de Genes , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , RNA Neoplásico/genética , Adulto , Linfócitos B/química , Linfócitos B/citologia , Northern Blotting , Western Blotting , Antígenos CD5/análise , Criança , Pré-Escolar , Humanos , Células Híbridas/química , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/química , Tonsila Palatina/citologia , RNA Neoplásico/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Células Tumorais Cultivadas/químicaRESUMO
MicroRNAs (miRNAs) are a class of small noncoding RNA genes recently found to be abnormally expressed in several types of cancer. Here, we describe a recently developed methodology for miRNA gene expression profiling based on the development of a microchip containing oligonucleotides corresponding to 245 miRNAs from human and mouse genomes. We used these microarrays to obtain highly reproducible results that revealed tissue-specific miRNA expression signatures, data that were confirmed by assessment of expression by Northern blots, real-time RT-PCR, and literature search. The microchip oligolibrary can be expanded to include an increasing number of miRNAs discovered in various species and is useful for the analysis of normal and disease states.
Assuntos
Perfilação da Expressão Gênica , Genoma , Genômica/métodos , MicroRNAs/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos/genética , Adulto , Animais , Northern Blotting , Células Cultivadas , Feto/metabolismo , Genoma Humano , Células HeLa , Humanos , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Especificidade de Órgãos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e EspecificidadeRESUMO
Little is known about the expression levels or function of micro-RNAs (miRNAs) in normal and neoplastic cells, although it is becoming clear that miRNAs play important roles in the regulation of gene expression during development [Ambros, V. (2003) Cell 113, 673-676; McManus, M. T. (2003) Semin. Cancer Biol. 13, 253-258]. We now report the genomewide expression profiling of miRNAs in human B cell chronic lymphocytic leukemia (CLL) by using a microarray containing hundreds of human precursor and mature miRNA oligonucleotide probes. This approach allowed us to identify significant differences in miRNome expression between CLL samples and normal CD5+ B cells; data were confirmed by Northern blot analyses and real-time RT-PCR. At least two distinct clusters of CLL samples can be identified that were associated with the presence or absence of Zap-70 expression, a predictor of early disease progression. Two miRNA signatures were associated with the presence or absence of mutations in the expressed Ig variableregion genes or with deletions at 13q14, respectively. These data suggest that miRNA expression patterns have relevance to the biological and clinical behavior of this leukemia.
Assuntos
Perfilação da Expressão Gênica/métodos , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/análise , Linfócitos B , Deleção Cromossômica , Cromossomos Humanos Par 13 , Genes de Imunoglobulinas , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase , Prognóstico , Proteínas Tirosina Quinases/análise , Proteínas Tirosina Quinases/genética , RNA Neoplásico/análise , Proteína-Tirosina Quinase ZAP-70RESUMO
Background. The finding of hemizygous or homozygous deletions at band 14 on chromosome 13 in a variety of neoplasms suggest the presence of a tumor-suppressor locus telomeric to the RB1 gene. Methods: We studied samples from 216 patients with various types of sporadic tumors or idiopathic pancytophenia, peripheral-blood samples from 109 patients with familial cancer or multiple cancers, and control blood samples from 475 health people or patients with diseases other than cancer. We performed functional studies of cell lines lacking ARLTS1 expression with the use of both the full-lenght ARLTS1 gene and a truncated variant. Results. We found a gene at 13q14, ARLTS1, a member of the ADP-ribosylation factor family, with properties of a tumor-supperssor gene. We analyzed 800 DNA samples from tumors and blood cells from patients with sporadic or familial cancer and controls and found that the frequency of a nonsense polymorphism, G446A (Trp149Stop), was similar in controls and patients with sporadic tumors but was significantly more common among patients with familial cancer than among those in the other two groups (P=0.02; odds ratio, 5.7;95 per cent confidence interval, 1.3 to 24.8). ARTLS1 was down-regulated by promoter methylation in 25 per cent of the primary tumors we analyzed. Transfection of wild-type ARLTS1 into A549 lung-cancer cells suppressed tumor formation in immunodeficient mice and induced apoptosis, whereas transfection of truncated ARLTS1 had a limited effect on apoptosis and tumor suppression. Microarray analysis revealed that the wild-type and Trp149Stop-transfected clones had different expression profiles