Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(3): 1856-1868, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38385618

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease and the most frequent cause of dementia. It is characterized by the accumulation in the brain of two pathological protein aggregates: amyloid-ß peptides (Aß) and abnormally phosphorylated tau. The progressive cognitive decline observed in patients strongly correlates with the synaptic loss. Many lines of evidence suggest that soluble forms of Aß accumulate into the brain where they cause synapse degeneration. Stopping their spreading and/or targeting the pathophysiological mechanisms leading to synaptic loss would logically be beneficial for the patients. However, we are still far from understanding these processes. Our objective was therefore to develop a versatile model to assay and study Aß-induced synaptotoxicity. We integrated a microfluidic device that physically isolates synapses from presynaptic and postsynaptic neurons with a microelectrode array. We seeded mouse primary cortical cells in the presynaptic and postsynaptic chambers. After functional synapses have formed in the synaptic chamber, we exposed them to concentrated conditioned media from cell lines overexpressing the wild-type or mutated amyloid precursor protein and thus secreting different levels of Aß. We recorded the neuronal activity before and after exposition to Aß and quantified Aß's effects on the connectivity between presynaptic and postsynaptic neurons. We observed that the application of Aß on the synapses for 48 h strongly decreased the interchamber connectivity without significantly affecting the neuronal activity in the presynaptic or postsynaptic chambers. Thus, through this model, we are able to functionally assay the impact of Aß peptides (or other molecules) on synaptic connectivity and to use the latter as a proxy to study Aß-induced synaptotoxicity. Moreover, since the presynaptic, postsynaptic, and synaptic chambers can be individually targeted, our assay provides a powerful tool to evaluate the involvement of candidate genes in synaptic vulnerability and/or test therapeutic strategies for AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Microeletrodos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Dispositivos Lab-On-A-Chip
2.
Biomed Phys Eng Express ; 9(3)2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36745905

RESUMO

Recently, the development of electronic devices to extracellularly record the simultaneous electrical activities of numerous neurons has been blooming, opening new possibilities to interface and decode neuronal activity. In this work, we tested how the use of EDOT electropolymerization to tune post-fabrication materials could optimize the cell/electrode interface of such devices. Our results showed an improved signal-to-noise ratio, better biocompatibility, and a higher number of neurons detected in comparison with gold electrodes. Then, using such enhanced recordings with 2D neuronal cultures combined with fluorescent optical imaging, we checked the extent to which the positions of the recorded neurons could be estimated solely via their extracellular signatures. Our results showed that assuming neurons behave as monopoles, positions could be estimated with a precision of approximately tens of micrometers.


Assuntos
Técnicas de Cultura de Células , Neurônios , Microeletrodos , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Ouro
3.
Microorganisms ; 8(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352792

RESUMO

Deregulation of the dynamic crosstalk between the gut microbiota, intestinal epithelial cells, and immune cells is critically involved in the development of inflammatory bowel disease and the overgrowth of opportunistic pathogens, including the human opportunistic fungus Candida albicans. In the present study, we assessed the effect of N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H89), a protein kinase A inhibitor, on the migration of macrophages to C. albicans through dextran sulphate sodium (DSS)-challenged Caco-2 cells. We also investigated the impact of H89 on intestinal inflammation and C. albicans clearance from the gut, and determined the diversity of the gut microbiota in a murine model of DSS-induced colitis. H89 reduced the migration of macrophages to C. albicans through DSS-challenged Caco-2 cells. In addition, H89 decreased C. albicans viability and diminished the expression of pro-inflammatory cytokines and innate immune receptors in macrophages and colonic epithelial Caco-2 cells. In mice with DSS-induced colitis, H89 attenuated the clinical and histological scores of inflammation and promoted the elimination of C. albicans from the gut. H89 administration to mice decreased the overgrowth of Escherichia coli and Enterococcus faecalis populations while Lactobacillus johnsonii populations increased significantly. Overall, H89 reduced intestinal inflammation and promoted the elimination of C. albicans from the gut.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA