Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360786

RESUMO

Since the emergence of high-throughput proteomic techniques and advances in clinical technologies, there has been a steady rise in the number of cancer-associated diagnostic, prognostic, and predictive biomarkers being identified and translated into clinical use. The characterisation of biofluids has become a core objective for many proteomic researchers in order to detect disease-associated protein biomarkers in a minimally invasive manner. The proteomes of biofluids, including serum, saliva, cerebrospinal fluid, and urine, are highly dynamic with protein abundance fluctuating depending on the physiological and/or pathophysiological context. Improvements in mass-spectrometric technologies have facilitated the in-depth characterisation of biofluid proteomes which are now considered hosts of a wide array of clinically relevant biomarkers. Promising efforts are being made in the field of biomarker diagnostics for haematologic malignancies. Several serum and urine-based biomarkers such as free light chains, ß-microglobulin, and lactate dehydrogenase are quantified as part of the clinical assessment of haematological malignancies. However, novel, minimally invasive proteomic markers are required to aid diagnosis and prognosis and to monitor therapeutic response and minimal residual disease. This review focuses on biofluids as a promising source of proteomic biomarkers in haematologic malignancies and a key component of future diagnostic, prognostic, and disease-monitoring applications.


Assuntos
Biomarcadores Tumorais/metabolismo , Líquidos Corporais/metabolismo , Neoplasias Hematológicas , Proteínas de Neoplasias/metabolismo , Proteômica , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/metabolismo , Humanos
2.
Methods Mol Biol ; 2596: 105-112, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378434

RESUMO

Cancer of blood or bone marrow-derived cells dysregulates normal hematopoiesis and accounts for over 6% of all cancer cases annually. Proteomic analyses of blood cancers have improved our understanding of disease mechanisms and identified numerous proteins of clinical relevance. For many years, gel-based proteomic studies have aided in the discovery of novel diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, in various diseases, including blood cancer. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) facilitates comparative proteomic research to identify differential protein expression in a simple and reproducible manner. The versatility of 2D-DIGE as a quantitative proteomic technique has provided insight into various aspects of blood cancer pathology, including disease development, prognostic subtypes, and drug resistance. The ability to couple 2D-DIGE with additional downstream mass spectrometry-based techniques yields comprehensive workflows capable of identifying proteins of biological and clinical significance. The application of 2D-DIGE in blood cancer research has significantly contributed to the increasingly important initiative of precision medicine. This chapter will focus on the influential role of 2D-DIGE as a tool in blood cancer research.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Proteômica/métodos , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel Diferencial Bidimensional/métodos , Espectrometria de Massas , Neoplasias/diagnóstico , Proteínas
3.
Methods Mol Biol ; 2645: 277-287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202627

RESUMO

Various types of cancer cells enrich or condition the medium that they are cultured in by secreting or shedding proteins and small molecules. These secreted or shed factors are involved in key biological processes, including cellular communication, proliferation, and migration, and are represented by protein families, including cytokines, growth factors, and enzymes. The rapid development of high-resolution mass spectrometry and shotgun strategies for proteome analysis facilitates the identification of these factors in biological models and elucidation of their potential roles in pathophysiology. Hence, the following protocol provides details on how to prepare proteins present in conditioned media for mass spectrometry analysis.


Assuntos
Neoplasias , Secretoma , Humanos , Linhagem Celular , Proteoma/metabolismo , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Meios de Cultivo Condicionados/análise
4.
Cancers (Basel) ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37568580

RESUMO

Multiple myeloma (MM) is an incurable haematological malignancy of plasma cells in the bone marrow. In rare cases, an aggressive form of MM called extramedullary multiple myeloma (EMM) develops, where myeloma cells enter the bloodstream and colonise distal organs or soft tissues. This variant is associated with refractoriness to conventional therapies and a short overall survival. The molecular mechanisms associated with EMM are not yet fully understood. Here, we analysed the proteome of bone marrow mononuclear cells and blood plasma from eight patients (one serial sample) with EMM and eight patients without extramedullary spread. The patients with EMM had a significantly reduced overall survival with a median survival of 19 months. Label-free mass spectrometry revealed 225 proteins with a significant differential abundance between bone marrow mononuclear cells (BMNCs) isolated from patients with MM and EMM. This plasma proteomics analysis identified 22 proteins with a significant differential abundance. Three proteins, namely vascular cell adhesion molecule 1 (VCAM1), pigment epithelium derived factor (PEDF), and hepatocyte growth factor activator (HGFA), were verified as the promising markers of EMM, with the combined protein panel showing excellent accuracy in distinguishing EMM patients from MM patients. Metabolomic analysis revealed a distinct metabolite signature in EMM patient plasma compared to MM patient plasma. The results provide much needed insight into the phenotypic profile of EMM and in identifying promising plasma-derived markers of EMM that may inform novel drug development strategies.

5.
Cancers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923680

RESUMO

Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.

6.
Proteomes ; 9(4)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34842843

RESUMO

Acute myeloid leukemia (AML) is characterized by an increasing number of clonal myeloid blast cells which are incapable of differentiating into mature leukocytes. AML risk stratification is based on genetic background, which also serves as a means to identify the optimal treatment of individual patients. However, constant refinements are needed, and the inclusion of significant measurements, based on the various omics approaches that are currently available to researchers/clinicians, have the potential to increase overall accuracy with respect to patient management. Using both nontargeted (label-free mass spectrometry) and targeted (multiplex immunoassays) proteomics, a range of proteins were found to be significantly changed in AML patients with different genetic backgrounds. The inclusion of validated proteomic biomarker panels could be an important factor in the prognostic classification of AML patients. The ability to measure both cellular and secreted analytes, at diagnosis and during the course of treatment, has advantages in identifying transforming biological mechanisms in patients, assisting important clinical management decisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA