Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pacing Clin Electrophysiol ; 36(11): 1417-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23875951

RESUMO

BACKGROUND: There is no scientific literature that examines radiofrequency (RF) interference from Smart Meters with cardiac implantable electronic devices (CIEDs). The objective of this in vitro study was to assess any potential interference with Medtronic CIEDs (Medtronic Inc., Minneapolis, MN, USA). METHODS: In the Quebec testing, five models of Medtronic CIEDs were placed in an acrylic cylinder filled with a saline solution and faced a Landis+Gyr Smart Meter or Router (Landis+Gyr AG, Zug, Switzerland). The distance between CIEDs and the meter casing or router antenna was 10 cm. The Meter's normal operating conditions were modified to artificially set the number of impulsions at an abnormally high level (one, two, and three impulses per second). Each scenario was repeated one to five times, for 1 minute each. In the U.S. testing, 6 cm and 15 cm (∼2.25' and ∼6') separated the six models of Medtronic CIEDs from the Schlumberger Smart Meter (Itron Inc., Liberty Lake, WA, USA), which generally sent out a 96-bit Standard Consumption Message over 3 seconds. The transmission varied in frequencies along with the interval between cycles. RESULTS: A total of 6,966 RF transmissions were completed during the 34 tests conducted in Quebec. In the United States, the CIED was exposed to the meter for 10 minutes to provide a minimum of 200 completed RF transmissions. No interference was observed in worst-case scenarios (testing of meters and CIEDs at their performance limits). CONCLUSIONS: Landis+Gyr Smart Meters/Routers and Schlumberger Smart Meters do not interfere with the functioning of the Medtronic CIEDs tested, when placed, respectively, 10 cm and 6 cm and 15 cm apart.


Assuntos
Artefatos , Redes de Comunicação de Computadores/instrumentação , Desfibriladores Implantáveis , Fontes de Energia Elétrica , Falha de Equipamento , Marca-Passo Artificial , Tecnologia sem Fio/instrumentação , Eletricidade , Análise de Falha de Equipamento/métodos , Quebeque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA