Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(37): 18613-18618, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31455740

RESUMO

Natural transformation (i.e., the uptake of DNA and its stable integration in the chromosome) is a major mechanism of horizontal gene transfer in bacteria. Although the vast majority of bacterial genomes carry the genes involved in natural transformation, close relatives of naturally transformable species often appear not competent for natural transformation. In addition, unexplained extensive variations in the natural transformation phenotype have been reported in several species. Here, we addressed this phenomenon by conducting a genome-wide association study (GWAS) on a panel of isolates of the opportunistic pathogen Legionella pneumophila GWAS revealed that the absence of the transformation phenotype is associated with the conjugative plasmid pLPL. The plasmid inhibits transformation by simultaneously silencing the genes required for DNA uptake and recombination. We identified a small RNA (sRNA), RocRp, as the sole plasmid-encoded factor responsible for the silencing of natural transformation. RocRp is homologous to the highly conserved and chromosome-encoded sRNA RocR which controls the transient expression of the DNA uptake system. Assisted by the ProQ/FinO-domain RNA chaperone RocC, RocRp acts as a substitute of RocR, ensuring that the bacterial host of the conjugative plasmid does not become naturally transformable. Distinct homologs of this plasmid-encoded sRNA are found in diverse conjugative elements in other Legionella species. Their low to high prevalence may result in the lack of transformability of some isolates up to the apparent absence of natural transformation in the species. Generally, our work suggests that conjugative elements obscure the widespread occurrence of natural transformability in bacteria.


Assuntos
Transferência Genética Horizontal , Legionella pneumophila/genética , Plasmídeos/genética , Pequeno RNA não Traduzido/genética , Transformação Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Estudo de Associação Genômica Ampla , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA , Pequeno RNA não Traduzido/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-29158279

RESUMO

trans-Translation is a ribosome-rescue system that is ubiquitous in bacteria. Small molecules defining a new family of oxadiazole compounds that inhibit trans-translation have been found to have broad-spectrum antibiotic activity. We sought to determine the activity of KKL-35, a potent member of the oxadiazole family, against the human pathogen Legionella pneumophila and other related species that can also cause Legionnaires' disease (LD). Consistent with the essential nature of trans-translation in L. pneumophila, KKL-35 inhibited the growth of all tested strains at submicromolar concentrations. KKL-35 was also active against other LD-causing Legionella species. KKL-35 remained equally active against L. pneumophila mutants that have evolved resistance to macrolides. KKL-35 inhibited the multiplication of L. pneumophila in human macrophages at several stages of infection. No resistant mutants could be obtained, even during extended and chronic exposure. Surprisingly, KKL-35 was not synergistic with other ribosome-targeting antibiotics and did not induce the filamentation phenotype observed in cells defective for trans-translation. Importantly, KKL-35 remained active against L. pneumophila mutants expressing an alternate ribosome-rescue system and lacking transfer-messenger RNA, the essential component of trans-translation. These results indicate that the antibiotic activity of KKL-35 is not related to the specific inhibition of trans-translation and its mode of action remains to be identified. In conclusion, KKL-35 is an effective antibacterial agent against the intracellular pathogen L. pneumophila with no detectable resistance development. However, further studies are needed to better understand its mechanism of action and to assess further the potential of oxadiazoles in treatment.


Assuntos
Antibacterianos/farmacologia , Benzamidas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Legionella pneumophila/efeitos dos fármacos , Legionella/efeitos dos fármacos , Oxidiazóis/farmacologia , Linhagem Celular , Humanos , Legionella/crescimento & desenvolvimento , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários , Macrolídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas
3.
ChemMedChem ; 11(16): 1790-803, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-26990578

RESUMO

NLRP3 inflammasome plays a key role in the intracellular activation of caspase-1, processing of pro-inflammatory interleukin-1ß (IL-1ß), and pyroptotic cell death cascade. The overactivation of NLRP3 is implicated in the pathogenesis of autoinflammatory diseases, known as cryopyrin-associated periodic syndromes (CAPS), and in the progression of several diseases, such as atherosclerosis, type-2 diabetes, gout, and Alzheimer's disease. In this study, the synthesis of acrylamide derivatives and their pharmaco-toxicological evaluation as potential inhibitors of NLRP3-dependent events was undertaken. Five hits were identified and evaluated for their efficiency in inhibiting IL-1ß release from different macrophage subtypes, including CAPS mutant macrophages. The most attractive hits were tested for their ability to inhibit NLRP3 ATPase activity on human recombinant NLRP3. This screening allowed the identification of 14, 2-(2-chlorobenzyl)-N-(4-sulfamoylphenethyl)acrylamide, which was able to concentration-dependently inhibit NLRP3 ATPase with an IC50 value of 74 µm. The putative binding pose of 14 in the ATPase domain of NLRP3 was also proposed.


Assuntos
Acrilamida/farmacologia , Desenho de Fármacos , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Acrilamida/síntese química , Acrilamida/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Inflamassomos/genética , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Estrutura Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA