Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuron ; 110(23): 3970-3985.e7, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36174573

RESUMO

Elucidating the neural circuits supporting odor identification remains an open challenge. Here, we analyze the contribution of the two output cell types of the mouse olfactory bulb (mitral and tufted cells) to decode odor identity and concentration and its dependence on top-down feedback from their respective major cortical targets: piriform cortex versus anterior olfactory nucleus. We find that tufted cells substantially outperform mitral cells in decoding both odor identity and intensity. Cortical feedback selectively regulates the activity of its dominant bulb projection cell type and implements different computations. Piriform feedback specifically restructures mitral responses, whereas feedback from the anterior olfactory nucleus preferentially controls the gain of tufted representations without altering their odor tuning. Our results identify distinct functional loops involving the mitral and tufted cells and their cortical targets. We suggest that in addition to the canonical mitral-to-piriform pathway, tufted cells and their target regions are ideally positioned to compute odor identity.


Assuntos
Camundongos , Animais
2.
Behav Brain Res ; 384: 112549, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32050097

RESUMO

We have previously provided the first evidence that the microbiota modulates the physiology of the olfactory epithelium using germfree mice. The extent to which changes to the olfactory system depend on the microbiota is still unknown. In the present work, we explored if different microbiota would differentially impact olfaction. We therefore studied the olfactory function of three groups of mice of the same genetic background, whose parents had been conventionalized before mating with microbiota from three different mouse strains. Caecal short chain fatty acids profiles and 16S rRNA gene sequencing ascertained that gut microbiota differed between the three groups. We then used a behavioural test to measure the attractiveness of various odorants and observed that the three groups of mice differed in their attraction towards odorants. Their olfactory epithelium properties, including electrophysiological responses recorded by electro-olfactograms and expression of genes related to the olfactory transduction pathway, also showed several differences. Overall, our data demonstrate that differences in gut microbiota profiles are associated with differences in olfactory preferences and in olfactory epithelium functioning.


Assuntos
Comportamento Animal , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/fisiologia , Mucosa Olfatória/fisiologia , Olfato/fisiologia , Animais , Bacteroidetes , Ceco , Eletrodiagnóstico , Firmicutes , Conteúdo Gastrointestinal/química , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Odorantes , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA