RESUMO
BACKGROUND: Inflammatory Bowel Diseases (IBD) are a major public health issue with unclear aetiology. Changes in the composition and functionality of the intestinal microbiota are associated with these pathologies, including the depletion of strict anaerobes such as Feacalibacterium prausnitzii. Less evidence is observed for depletion in other anaerobes, among which bifidobacteria. This study characterized the taxonomic and functional diversity of bifidobacteria isolated from the human intestinal microbiota in active and non-active IBD patients by a culturomics approach and evaluated if these bifidobacteria might be used as probiotics for gut health. RESULTS: A total of 341 bifidobacteria were isolated from the intestinal microbiota of IBD patients (52 Crohn's disease and 26 ulcerative colitis patients), with a high proportion of Bifidobacterium dentium strains (28% of isolated bifidobacteria). In ulcerative colitis, the major species identified was B. dentium (39% of isolated bifidobacteria), in active and non-active ulcerative colitis. In Crohn's disease, B. adolescentis was the major species isolated from non-active patients (40%), while similar amounts of B. dentium and B. adolescentis were found in active Crohn's disease patients. The relative abundance of B. dentium was increased with age, both in Crohn's disease and ulcerative colitis and active and non-active IBD patients. Antibacterial capacities of bifidobacteria isolated from non-active ulcerative colitis against Escherichia coli LF82 and Salmonella enterica ATCC 14028 were observed more often compared to strains isolated from active ulcerative colitis. Finally, B. longum were retained as strains with the highest probiotic potential as they were the major strains presenting exopolysaccharide synthesis, antibacterial activity, and anti-inflammatory capacities. Antimicrobial activity and EPS synthesis were further correlated to the presence of antimicrobial and EPS gene clusters by in silico analysis. CONCLUSIONS: Different bifidobacterial taxonomic profiles were identified in the microbiota of IBD patients. The most abundant species were B. dentium, mainly associated to the microbiota of ulcerative colitis patients and B. adolescentis, in the intestinal microbiota of Crohn's disease patients. Additionally, the relative abundance of B. dentium significantly increased with age. Furthermore, this study evidenced that bifidobacteria with probiotic potential (antipathogenic activity, exopolysaccharide production and anti-inflammatory activity), especially B. longum strains, can be isolated from the intestinal microbiota of both active and non-active Crohn's disease and ulcerative colitis patients.
Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Probióticos , Humanos , Bifidobacterium/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , Adulto , Feminino , Masculino , Pessoa de Meia-Idade , Doenças Inflamatórias Intestinais/microbiologia , Adulto Jovem , Idoso , Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Filogenia , Fezes/microbiologia , RNA Ribossômico 16S/genética , Fenótipo , Adolescente , Antibacterianos/farmacologiaRESUMO
Conventional molecular tests for detecting Mycobacterium tuberculosis complex (MTBC) drug resistance on clinical samples cover a limited set of mutations. Whole-genome sequencing (WGS) typically requires culture.Here, we evaluated the Deeplex Myc-TB targeted deep-sequencing assay for prediction of resistance to 13 anti-tuberculous drugs/drug classes, directly applicable on sputum.With MTBC DNA tests, the limit of detection was 100-1000 genome copies for fixed resistance mutations. Deeplex Myc-TB captured in silico 97.1-99.3% of resistance phenotypes correctly predicted by WGS from 3651 MTBC genomes. On 429 isolates, the assay predicted 92.2% of 2369 first- and second-line phenotypes, with a sensitivity of 95.3% and a specificity of 97.4%. 56 out of 69 (81.2%) residual discrepancies with phenotypic results involved pyrazinamide, ethambutol and ethionamide, and low-level rifampicin or isoniazid resistance mutations, all notoriously prone to phenotypic testing variability. Only two out of 91 (2.2%) resistance phenotypes undetected by Deeplex Myc-TB had known resistance-associated mutations by WGS analysis outside Deeplex Myc-TB targets. Phenotype predictions from Deeplex Myc-TB analysis directly on 109 sputa from a Djibouti survey matched those of MTBSeq/PhyResSE/Mykrobe, fed with WGS data from subsequent cultures, with a sensitivity of 93.5/98.5/93.1% and a specificity of 98.5/97.2/95.3%, respectively. Most residual discordances involved gene deletions/indels and 3-12% heteroresistant calls undetected by WGS analysis or natural pyrazinamide resistance of globally rare "Mycobacterium canettii" strains then unreported by Deeplex Myc-TB. On 1494 arduous sputa from a Democratic Republic of the Congo survey, 14â902 out of 19â422 (76.7%) possible susceptible or resistance phenotypes could be predicted culture-free.Deeplex Myc-TB may enable fast, tailored tuberculosis treatment.
Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/genética , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
In a 12-month nationwide study on the prevalence of drug-resistant tuberculosis (TB) in Lebanon, we identified 3 multidrug-resistant cases and 3 extensively drug-resistant TB cases in refugees, migrants, and 1 Lebanon resident. Enhanced diagnostics, particularly in major destinations for refugees, asylum seekers, and migrant workers, can inform treatment decisions and may help prevent the spread of drug-resistant TB.
Assuntos
Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Adulto , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Feminino , Genes Bacterianos , Genótipo , História do Século XXI , Humanos , Líbano/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Repetições Minissatélites , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/história , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adulto JovemRESUMO
The human- and animal-adapted lineages of the Mycobacterium tuberculosis complex (MTBC) are thought to have expanded from a common progenitor in Africa. However, the molecular events that accompanied this emergence remain largely unknown. Here, we describe two MTBC strains isolated from patients with multidrug resistant tuberculosis, representing an as-yet-unknown lineage, named Lineage 8 (L8), seemingly restricted to the African Great Lakes region. Using genome-based phylogenetic reconstruction, we show that L8 is a sister clade to the known MTBC lineages. Comparison with other complete mycobacterial genomes indicate that the divergence of L8 preceded the loss of the cobF genome region - involved in the cobalamin/vitamin B12 synthesis - and gene interruptions in a subsequent common ancestor shared by all other known MTBC lineages. This discovery further supports an East African origin for the MTBC and provides additional molecular clues on the ancestral genome reduction associated with adaptation to a pathogenic lifestyle.
Assuntos
Genoma Bacteriano , Mycobacterium tuberculosis/classificação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Idoso , DNA Bacteriano/genética , Evolução Molecular , Variação Genética , Genômica , Genótipo , Humanos , Funções Verossimilhança , Limite de Detecção , Masculino , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Fenótipo , Filogenia , Rifampina/farmacologia , Ruanda , UgandaRESUMO
Recent developments in sequencing technologies and bioinformatics analysis provide a greater amount of DNA sequencing reads at a low cost. Microsatellites are the markers of choice for a variety of population genetic studies, and high quality markers can be discovered in non-model organisms, such as tuna, with these recent developments. Here, we use a high-throughput method to isolate microsatellite markers in albacore tuna, Thunnus alalunga, based on coupling multiplex enrichment and next-generation sequencing on 454 GS-FLX Titanium pyrosequencing. The crucial minimum number of polymorphic markers to infer evolutionary and ecological processes for this species has been described for the first time. We provide 1670 microsatellite design primer pairs, and technical and molecular genetics selection resulting in 43 polymorphic microsatellite markers. On this panel, we characterized 34 random and selectively neutral markers («neutral¼) and 9 «non-neutral¼ markers. The variability of «neutral¼ markers was screened with 136 individuals of albacore tuna from southwest Indian Ocean (42), northwest Indian Ocean (31), South Africa (31), and southeast Atlantic Ocean (32). Power analysis demonstrated that the panel of genetic markers can be applied in diversity and population genetics studies. Global genetic diversity for albacore was high with a mean number of alleles at 16.94; observed heterozygosity 66% and expected heterozygosity 77%. The number of individuals was insufficient to provide accurate results on differentiation. Of the 9 «non-neutral¼ markers, 3 were linked to a sequence of known function. The one is located to a sequence having an immunity function (ThuAla-Tcell-01) and the other to a sequence having energy allocation function (ThuAla-Hki-01). These two markers were genotyped on the 136 individuals and presented different diversity levels. ThuAla-Tcell-01 has a high number of alleles (20), heterozygosity (87-90%), and assignment index. ThuAla-Hki-01 has a lower number of alleles (9), low heterozygosity (24-27%), low assignment index and significant inbreeding. Finally, the 34 «neutral¼ and 3 «non-neutral¼ microsatellites markers were tested on four economically important Scombridae species-Thunnus albacares, Thunnus thynnus, Thunnus obesus, and Acanthocybium solandri.
Assuntos
Genômica , Repetições de Microssatélites/genética , Atum/genética , Alelos , Animais , Variação Genética , Heterozigoto , Projetos PilotoRESUMO
We report here the complete sequence of the mitochondrial (mt) genome of the pathogenic yeast Candida glabrata. This 20 kb mt genome is the smallest among sequenced hemiascomycetous yeasts. Despite its compaction, the mt genome contains the genes encoding the apocytochrome b (COB), three subunits of ATP synthetase (ATP6, 8 and 9), three subunits of cytochrome oxidase (COX1, 2 and 3), the ribosomal protein VAR1, 23 tRNAs, small and large ribosomal RNAs and the RNA subunit of RNase P. Three group I introns each with an intronic open reading frame are present in the COX1 gene. This sequence is available under accession number AJ511533.
Assuntos
Candida glabrata/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Proteínas de Membrana Transportadoras , Mitocôndrias/genética , Adenosina Trifosfatases/genética , Sequência de Bases , Candida glabrata/patogenicidade , Códon , Citocromos b/genética , DNA Ribossômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Proteínas Fúngicas/metabolismo , Ordem dos Genes , Código Genético , Íntrons , Proteínas de Membrana/genética , Proteínas Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , RNA de Transferência , Ribonuclease P/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Transcrição GênicaRESUMO
Microsatellites (or SSRs: simple sequence repeats) are among the most frequently used DNA markers in many areas of research. The use of microsatellite markers is limited by the difficulties involved in their de novo isolation from species for which no genomic resources are available. We describe here a high-throughput method for isolating microsatellite markers based on coupling multiplex microsatellite enrichment and next-generation sequencing on 454 GS-FLX Titanium platforms. The procedure was calibrated on a model species (Apis mellifera) and validated on 13 other species from various taxonomic groups (animals, plants and fungi), including taxa for which severe difficulties were previously encountered using traditional methods. We obtained from 11,497 to 34,483 sequences depending on the species and the number of detected microsatellite loci ranged from 199 to 5791. We thus demonstrated that this procedure can be readily and successfully applied to a large variety of taxonomic groups, at much lower cost than would have been possible with traditional protocols. This method is expected to speed up the acquisition of high-quality genetic markers for nonmodel organisms.
Assuntos
Abelhas/genética , DNA/química , DNA/genética , Biblioteca Gênica , Repetições de Microssatélites , Tipagem Molecular/métodos , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
To understand the evolution, attenuation, and variable protective efficacy of bacillus Calmette-Guérin (BCG) vaccines, Mycobacterium bovis BCG Pasteur 1173P2 has been subjected to comparative genome and transcriptome analysis. The 4,374,522-bp genome contains 3,954 protein-coding genes, 58 of which are present in two copies as a result of two independent tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur, although four forms of DU2 exist; DU2-I is confined to early BCG vaccines, like BCG Japan, whereas DU2-III and DU2-IV occur in the late vaccines. The glycerol-3-phosphate dehydrogenase gene, glpD2, is one of only three genes common to all four DU2 variants, implying that BCG requires higher levels of this enzyme to grow on glycerol. Further amplification of the DU2 region is ongoing, even within vaccine preparations used to immunize humans. An evolutionary scheme for BCG vaccines was established by analyzing DU2 and other markers. Lesions in genes encoding sigma-factors and pleiotropic transcriptional regulators, like PhoR and Crp, were also uncovered in various BCG strains; together with gene amplification, these affect gene expression levels, immunogenicity, and, possibly, protection against tuberculosis. Furthermore, the combined findings suggest that early BCG vaccines may even be superior to the later ones that are more widely used.
Assuntos
Vacina BCG/genética , Genoma Bacteriano , Mycobacterium bovis/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Evolução Molecular , Genoma , Genômica , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mycobacterium bovis/genética , Fenótipo , Filogenia , RNA Mensageiro/metabolismo , Tuberculose/imunologia , Vacinas contra a Tuberculose/genéticaRESUMO
Mycobacterium bovis is the causative agent of tuberculosis in a range of animal species and man, with worldwide annual losses to agriculture of $3 billion. The human burden of tuberculosis caused by the bovine tubercle bacillus is still largely unknown. M. bovis was also the progenitor for the M. bovis bacillus Calmette-Guérin vaccine strain, the most widely used human vaccine. Here we describe the 4,345,492-bp genome sequence of M. bovis AF2122/97 and its comparison with the genomes of Mycobacterium tuberculosis and Mycobacterium leprae. Strikingly, the genome sequence of M. bovis is >99.95% identical to that of M. tuberculosis, but deletion of genetic information has led to a reduced genome size. Comparison with M. leprae reveals a number of common gene losses, suggesting the removal of functional redundancy. Cell wall components and secreted proteins show the greatest variation, indicating their potential role in host-bacillus interactions or immune evasion. Furthermore, there are no genes unique to M. bovis, implying that differential gene expression may be the key to the host tropisms of human and bovine bacilli. The genome sequence therefore offers major insight on the evolution, host preference, and pathobiology of M. bovis.