Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Hepatology ; 77(6): 1998-2015, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36815382

RESUMO

BACKGROUND AND AIMS: Liver fibrosis results from the accumulation of myofibroblasts (MFs) derived from quiescent HSCs, and yes-associated protein (YAP) controls this state transition. Although fibrosis is also influenced by HSC death and senescence, whether YAP regulates these processes and whether this could be leveraged to treat liver fibrosis are unknown. APPROACH AND RESULTS: YAP activity was manipulated in MF-HSCs to determine how YAP impacts susceptibility to pro-apoptotic senolytic agents or ferroptosis. Effects of senescence on YAP activity and susceptibility to apoptosis versus ferroptosis were also examined. CCl 4 -treated mice were treated with a ferroptosis inducer or pro-apoptotic senolytic to determine the effects on liver fibrosis. YAP was conditionally disrupted in MFs to determine how YAP activity in MF-HSC affects liver fibrosis in mouse models. Silencing YAP in cultured MF-HSCs induced HSC senescence and vulnerability to senolytics, and promoted ferroptosis resistance. Conversely, inducing HSC senescence suppressed YAP activity, increased sensitivity to senolytics, and decreased sensitivity to ferroptosis. Single-cell analysis of HSCs from fibrotic livers revealed heterogeneous sensitivity to ferroptosis, apoptosis, and senescence. In mice with chronic liver injury, neither the ferroptosis inducer nor senolytic improved fibrosis. However, selectively depleting YAP in MF-HSCs induced senescence and decreased liver injury and fibrosis. CONCLUSION: YAP determines whether MF-HSCs remain activated or become senescent. By regulating this state transition, Yap controls both HSC fibrogenic activity and susceptibility to distinct mechanisms for cell death. MF-HSC-specific YAP depletion induces senescence and protects injured livers from fibrosis. Clarifying determinants of HSC YAP activity may facilitate the development of novel anti-fibrotic therapies.


Assuntos
Cirrose Hepática , Senoterapia , Camundongos , Animais , Cirrose Hepática/patologia , Fígado/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Morte Celular , Células Estreladas do Fígado/metabolismo
2.
Hepatology ; 78(4): 1209-1222, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37036206

RESUMO

BACKGROUND AND AIMS: Senescent hepatocytes accumulate in parallel with fibrosis progression during NASH. The mechanisms that enable progressive expansion of nonreplicating cell populations and the significance of that process in determining NASH outcomes are unclear. Senescing cells upregulate thrombomodulin-protease-activated receptor-1 (THBD-PAR1) signaling to remain viable. Vorapaxar blocks the activity of that pathway. We used vorapaxar to determine if and how THBD-PAR1 signaling promotes fibrosis progression in NASH. APPROACH AND RESULTS: We evaluated the THBD-PAR1 pathway in liver biopsies from patients with NAFLD. Chow-fed mice were treated with viral vectors to overexpress p16 in hepatocytes and induce replicative senescence. Effects on the THBD-PAR1 axis and regenerative capacity were assessed; the transcriptome of p16-overexpressing hepatocytes was characterized, and we examined how conditioned medium from senescent but viable (dubbed "undead") hepatocytes reprograms HSCs. Mouse models of NASH caused by genetic obesity or Western diet/CCl 4 were treated with vorapaxar to determine effects on hepatocyte senescence and liver damage. Inducing senescence upregulates the THBD-PAR1 signaling axis in hepatocytes and induces their expression of fibrogenic factors, including hedgehog ligands. Hepatocyte THBD-PAR1 signaling increases in NAFLD and supports sustained hepatocyte senescence that limits effective liver regeneration and promotes maladaptive repair. Inhibiting PAR1 signaling with vorapaxar interrupts this process, reduces the burden of 'undead' senescent cells, and safely improves NASH and fibrosis despite ongoing lipotoxic stress. CONCLUSION: The THBD-PAR1 signaling axis is a novel therapeutic target for NASH because blocking this pathway prevents accumulation of senescing but viable hepatocytes that generate factors that promote maladaptive liver repair.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor PAR-1/metabolismo , Trombomodulina/metabolismo , Hepatócitos/metabolismo , Fígado/patologia , Fibrose , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38912634

RESUMO

Fluctuations in energy gap and coupling constants between chromophores can play an important role in absorption and energy transfer across a collection of two-level systems. In photosynthesis, light-induced quantum coherence can affect the efficiency of energy transfer to the designated "trap" state. Theoretically, the interplay between fluctuations and coherence has been studied often, employing either a Markovian or a perturbative approximation. In this study, we depart from these approaches to incorporate memory effects by using Kubo's quantum stochastic Liouville equation. We introduce the effects of decay of the created excitation (to the ground state) on the desired propagation and trapping that provides a direction of flow of the excitation. In the presence of light-induced pumping, we establish a relation between the efficiency, the mean survival time, and the correlation decay time of the bath-induced fluctuations. A decrease in the steady-state coherence during the transition from the non-Markovian regime to the Markovian limit results in a decrease in efficiency. As in the well-known Haken-Strobl model, the ratio of the square of fluctuation strength to the rate plays a critical role in determining the mechanism of energy transfer and in shaping the characteristics of the efficiency profile. We recover a connection between the transfer flux and the imaginary part of coherences in both equilibrium and excited bath states, in both correlated and uncorrelated bath models. We uncover a non-monotonic dependence of efficiency on site energy heterogeneity for both correlated and uncorrelated bath models.

4.
J Chem Phys ; 161(15)2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39422207

RESUMO

The dynamics of molecular excitonic systems are complicated by a competition between electronic coupling (which drives delocalization) and vibrational-electronic (vibronic) interactions (which tend to encourage electronic localization). A particular challenge of molecular systems is that they typically possess a large number of independent vibrations, with frequencies often spanning the entire spectrum of relevant electronic energy gaps. Recent spectroscopic observations and numerical simulations on a water-soluble chlorophyll-binding protein (WSCP) reveal a transition between two regimes of vibronic behavior, a Redfield-like regime in which low-frequency vibrations respond to a delocalized excitonic state, and a Förster-like regime where high-frequency vibrations act as incoherent excitations on individual pigments. Although numerical simulations can reproduce these effects, there is a need for a simple, systematic theory that accurately describes the smooth transition between these two regimes in experimental spectra. Here we address this challenge by generalizing the variational polaron transform approach of [Bloemsma et al., Chem. Phys. 481, 250 (2016)] to include arbitrary bath densities for systems with or without symmetry. We benchmark this theory against both numerical matrix-diagonalization methods and experimental 77 K fluorescence spectra for two WSCP variants, obtaining quite satisfactory agreement in both cases. We apply this theory to offer an explanation for the large loss in apparent electronic coupling in the WSCP Q57K mutant and to examine the likely impact of the interplay between excitonic delocalization and vibrational localization on vibrational sideband shapes and apparent coupling strengths in high-resolution optical spectra for chlorophyll-protein complexes such as WSCP.

5.
Semin Liver Dis ; 43(4): 418-428, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37802119

RESUMO

The purpose of this review is to summarize current knowledge about the role of the Hedgehog signaling pathway in liver homeostasis and disease. Hedgehog is a morphogenic signaling pathway that is active in development. In most healthy tissues, pathway activity is restricted to stem and/or stromal cell compartments, where it enables stem cell self-renewal and tissue homeostasis. Aberrant over-activation of Hedgehog signaling occurs in many cancers, including hepatocellular and cholangio-carcinoma. The pathway is also activated transiently in stromal cells of injured tissues and orchestrates normal wound healing responses, including inflammation, vascular remodeling, and fibrogenesis. In liver, sustained Hedgehog signaling in stromal cells plays a major role in the pathogenesis of cirrhosis. Hedgehog signaling was thought to be silenced in healthy hepatocytes. However, recent studies show that targeted disruption of the pathway in hepatocytes dysregulates lipid, cholesterol, and bile acid metabolism, and promotes hepatic lipotoxicity, insulin resistance, and senescence. Hepatocytes that lack Hedgehog activity also produce a secretome that activates Hedgehog signaling in cholangiocytes and neighboring stromal cells to induce inflammatory and fibrogenic wound healing responses that drive progressive fibrosis. In conclusion, Hedgehog signaling must be precisely controlled in adult liver cells to maintain liver health.


Assuntos
Proteínas Hedgehog , Hepatopatias , Adulto , Humanos , Proteínas Hedgehog/metabolismo , Hepatopatias/metabolismo , Fígado/patologia , Transdução de Sinais/fisiologia , Cirrose Hepática/metabolismo
6.
Phys Chem Chem Phys ; 24(41): 25373-25382, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36239220

RESUMO

Experimentally measured transition path time distributions are usually analyzed theoretically in terms of a diffusion equation over a free energy barrier. It is though well understood that the free energy profile separating the folded and unfolded states of a protein is characterized as a transition through many stable micro-states which exist between the folded and unfolded states. Why is it then justified to model the transition path dynamics in terms of a diffusion equation, namely the Smoluchowski equation (SE)? In principle, van Kampen has shown that a nearest neighbor Markov chain of thermal jumps between neighboring microstates will lead in a continuum limit to the SE, such that the friction coefficient is proportional to the mean residence time in each micro-state. However, the practical question of how many microstates are needed to justify modeling the transition path dynamics in terms of an SE has not been addressed. This is a central topic of this paper where we compare numerical results for transition paths based on the diffusion equation on the one hand and the nearest neighbor Markov jump model on the other. Comparison of the transition path time distributions shows that one needs at least a few dozen microstates to obtain reasonable agreement between the two approaches. Using the Markov nearest neighbor model one also obtains good agreement with the experimentally measured transition path time distributions for a DNA hairpin and PrP protein. As found previously when using the diffusion equation, the Markov chain model used here also reproduces the experimentally measured long time tail and confirms that the transition path barrier height is ∼3kBT. This study indicates that in the future, when attempting to model experimentally measured transition path time distributions, one should perhaps prefer a nearest neighbor Markov model which is well defined also for rough energy landscapes. Such studies can also shed light on the minimal number of microstates needed to unravel the experimental data.


Assuntos
Dobramento de Proteína , Proteínas , Difusão , Cadeias de Markov , Fenômenos Físicos , Termodinâmica
7.
J Hepatol ; 75(3): 623-633, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33964370

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD), the hepatic correlate of the metabolic syndrome, is a major risk factor for hepatobiliary cancer (HBC). Although chronic inflammation is thought to be the root cause of all these diseases, the mechanism whereby it promotes HBC in NAFLD remains poorly understood. Herein, we aim to evaluate the hypothesis that inflammation-related dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes HB carcinogenesis. METHODS: We use murine NAFLD models, liver biopsies from patients with NAFLD, human liver cancer registry data, and studies in liver cancer cell lines. RESULTS: Our results confirm the hypothesis that inflammation-related dysregulation of the ESRP2-NF2-YAP/TAZ axis promotes HB carcinogenesis, supporting a model whereby chronic inflammation suppresses hepatocyte expression of ESRP2, an RNA splicing factor that directly targets and activates NF2, a tumor suppressor that is necessary to constrain YAP/TAZ activation. The resultant loss of NF2 function permits sustained YAP/TAZ activity that drives hepatocyte proliferation and de-differentiation. CONCLUSION: Herein, we report on a novel mechanism by which chronic inflammation leads to sustained activation of YAP/TAZ activity; this imposes a selection pressure that favors liver cells with mutations enabling survival during chronic oncogenic stress. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) increases the risk of hepatobiliary carcinogenesis. However, the underlying mechanism remains unknown. Our study demonstrates that chronic inflammation suppresses hepatocyte expression of ESRP2, an adult RNA splicing factor that activates NF2. Thus, inactive (fetal) NF2 loses the ability to activate Hippo kinases, leading to the increased activity of downstream YAP/TAZ and promoting hepatobiliary carcinogenesis in chronically injured livers.


Assuntos
Eixo Encéfalo-Intestino/genética , Carcinogênese/metabolismo , Doenças do Sistema Digestório/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Animais , Eixo Encéfalo-Intestino/fisiologia , Carcinogênese/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Liver Int ; 41(9): 2214-2227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991158

RESUMO

BACKGROUND & AIMS: The outcome of liver injury is dictated by factors that control the accumulation of myofibroblastic (activated) hepatic stellate cells (MF-HSCs) but therapies that specifically block this process have not been discovered. We evaluated the hypothesis that MF-HSCs and liver fibrosis could be safely reduced by inhibiting the cysteine/glutamate antiporter xCT. METHODS: xCT activity was disrupted in both HSC lines and primary mouse HSCs to determine its effect on HSC biology. For comparison, xCT expression and function were also determined in primary mouse hepatocytes. Finally, the roles of xCT were assessed in mouse models of liver fibrosis. RESULTS: We found that xCT mRNA levels were almost a log-fold higher in primary mouse HSCs than in primary mouse hepatocytes. Further, primary mouse HSCs dramatically induced xCT as they became MF, and inhibiting xCT blocked GSH synthesis, reduced growth and fibrogenic gene expression and triggered HSC ferroptosis. Doses of xCT inhibitors that induced massive ferroptosis in HSCs had no effect on hepatocyte viability in vitro, and xCT inhibitors reduced liver fibrosis without worsening liver injury in mice with acute liver injury. However, TGFß treatment up-regulated xCT and triggered ferroptosis in cultured primary mouse hepatocytes. During chronic liver injury, xCT inhibitors exacerbated injury, impaired regeneration and failed to improve fibrosis, confirming that HSCs and hepatocytes deploy similar mechanisms to survive chronic oxidative stress. CONCLUSIONS: Inhibiting xCT can suppress myofibroblastic activity and induce ferroptosis of MF-HSCs. However, targeting xCT inhibition to MF-HSCs will be necessary to exploit ferroptosis as an anti-fibrotic strategy.


Assuntos
Ferroptose , Células Estreladas do Fígado , Animais , Células Estreladas do Fígado/patologia , Hepatócitos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Camundongos
9.
Phys Chem Chem Phys ; 23(41): 23787-23795, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643635

RESUMO

Recent advances in experimental measurements of transition path time distributions have raised intriguing theoretical questions. The present interpretation of the experimental data indicates a small value of the fitted transition path barrier height as compared to the barrier height of the unfolded to folded transition. Secondly, as shown in this paper, it is essential to analyse the experimental data using absorbing boundary conditions at the end points used to determine the transition paths. Such an analysis reveals long time tails that have thus far eluded quantitative theoretical interpretation. Is this due to uncertainty in the experimental data or does it call for a rethinking of the theoretical interpretation? A detailed study of the transition path time distribution using a diffusive model leads to the following conclusions. a. The present experimental data is not accurate enough to discern between functional forms of bell shaped free energy barriers. b. Long time tails indicate the possible existence of a "trap" in the transition path region. c. The "trap" may be considered as a well in the free energy surface. d. The long time tail is quite sensitive to the form of the trap so that future measurements of the long time tail as a function of the location of the end points of the transition path may make it possible to not only determine the well depth but also to distinguish between different functional forms for the free energy surface. e. Introduction of a well along the transition path leads to good fits with the experimental data provided that the transition path barrier height is ∼3kBT, substantially higher than the estimates of ∼1kBT based on bell shaped functions. The results presented here negate the need of introducing multi-dimensional effects, free energy barrier asymmetry, sub-diffusive memory kernels or systematic ruggedness to explain the experimentally measured data.


Assuntos
Desdobramento de Proteína , Proteínas/química , Termodinâmica , Fatores de Tempo
10.
J Phys Chem A ; 125(22): 4695-4704, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34047565

RESUMO

Several recent studies have interrogated the role of quantum coherence in affecting the transfer efficiency of an optical excitation to the designated "trap" state where the energy can be used for subsequent reactions, as in photosynthesis. However, these studies invoke a Markovian approximation for the time correlation function describing the environment-induced stochastic fluctuations. Here, we employ Kubo's quantum stochastic Liouville equation (QSLE) to include memory effects. We extend the existing QSLE scheme to introduce decay of a newly created excitation due to radiative and nonradiative channels and also by desired trapping toward the targeted chromophore. We show that the theoretical formalism based on the QSLE correctly reproduces the rate equation description in the Markovian limit, with the rate constants determined by an appropriate quantum limiting procedure. We find that under certain conditions, the efficiency of excitation transfer to the trap gains from the combined presence of quantum coherence and temporally correlated stochastic fluctuations. We work out different limiting situations in order to discover and quantify the optimum conditions for the energy transfer to the trapped state. We find that maximum energy transfer efficiency is achieved in the intermediate limit between coherent and incoherent transport.

11.
Phys Rev Lett ; 124(14): 147202, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338981

RESUMO

We present inelastic neutron scattering measurements of magnetic excitations in stripe ordered Pr_{3/2}Sr_{1/2}NiO_{4} at T∼10 K. For the observed magnetic incommensurability ε=0.4, we have incorporated a stripe discommensuration model in our linear spin wave calculation and obtained best agreement with the measured spin wave dispersion, especially to explain the symmetrical outward shift of the magnetic peaks from Néel ordered zone center in energy range 35 to 45 meV. Our study indicates the prerequisite to consider a discommensurated spin stripe unit with proper out-of-plane and in-plane exchange interactions in between Ni^{2+} spins to describe the observed spin wave characteristics in Pr_{3/2}Sr_{1/2}NiO_{4}.

12.
Am J Pathol ; 187(4): 724-739, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28208054

RESUMO

The catabolic enzyme myo-inositol oxygenase (MIOX) is expressed in proximal tubules and up-regulated in the diabetic state. Previously, we reported its transcriptional and translation regulation by high glucose (HG), osmolytes, and fatty acids. However, its epigenetic regulation is unknown. Bisulfite sequencing revealed that both human and mouse MIOX promoters, enriched with CpG sites, are hypomethylated and unmethylated under HG ambience and hyperglycemic states associated with increased MIOX expression. Eletrophoretic mobility shift assays revealed increased binding of unmethylated oligos with nucleoproteins of cells maintained under HG. In addition, a strong binding of specificity protein (Sp)-1 transcription factor with MIOX promoter was observed under HG, especially with unmethylated Sp-1 oligo. Specificity of binding was established by supershift assays and treatment with the Sp-1 inhibitor mithramycin. Promoter analysis revealed an increase in luciferase activity under HG, which was reduced after mutation of the Sp-1-binding site. Sp1 siRNA treatment reduced mRNA and protein expression of Sp-1 and MIOX and generation of reactive oxygen species derived from NADPH oxidase (NOX)-4 and mitochondrial sources. In addition, there was reduced expression of hypoxia-inducible factor-1α relevant in the pathogenesis of diabetic nephropathy. Sp1 siRNA treatment reduced fibronectin expression, an extracellular matrix protein that is increased in diabetic nephropathy and tubulopathy. HG-induced MIOX expression was also reduced with the treatment of apelin-13, which deacetylates histones. Overall, these findings highlight the epigenetic regulation of MIOX in the pathogenesis of diabetic tubulopathy.


Assuntos
Metilação de DNA/genética , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/patologia , Glucose/toxicidade , Inositol Oxigenase/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ilhas de CpG/genética , Nefropatias Diabéticas/genética , Fibronectinas/metabolismo , Deleção de Genes , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inositol Oxigenase/genética , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nucleoproteínas/metabolismo , Oxirredução/efeitos dos fármacos , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo
13.
J Am Soc Nephrol ; 28(5): 1421-1436, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27895157

RESUMO

Overexpression of the proximal tubular enzyme myo-inositol oxygenase (MIOX) induces oxidant stress in vitro However, the relevance of MIOX to tubular pathobiology remains enigmatic. To investigate the role of MIOX in cisplatin-induced tubular AKI, we generated conditional MIOX-overexpressing transgenic (MIOX-TG) mice and MIOX-knockout (MIOX-/-) mice with tubule-specific MIOX overexpression or knockout, respectively. Compared with cisplatin-treated wild-type (WT) mice, cisplatin-treated MIOX-TG mice had even greater increases in urea, creatinine, and KIM-1 levels and more tubular injury and apoptosis, but these effects were attenuated in cisplatin-treated MIOX-/- mice. Similarly, MIOX-TG mice had the highest and MIOX-/- mice had the lowest renal levels of Bax, cleaved caspase-3, and NADPH oxidase-4 expression and reactive oxygen species (ROS) generation after cisplatin treatment. In vitro, cisplatin dose-dependently increased ROS generation in LLC-PK1 cells. Furthermore, MIOX overexpression in these cells accentuated cisplatin-induced ROS generation and perturbations in the ratio of GSH to oxidized GSH, whereas MIOX-siRNA or N-acetyl cysteine treatment attenuated these effects. Additionally, the cisplatin-induced enhancement of p53 activation, NF-κB binding to DNA, and NF-κB nuclear translocation in WT mice was exacerbated in MIOX-TG mice but absent in MIOX-/- mice. In vitro, MIOX-siRNA or NAC treatment reduced the dose-dependent increase in p53 expression induced by cisplatin. We also observed a remarkable influx of inflammatory cells and upregulation of cytokines in kidneys of cisplatin-treated MIOX-TG mice. Finally, analysis of genomic DNA in WT mice revealed cisplatin-induced hypomethylation of the MIOX promoter. These data suggest that MIOX overexpression exacerbates, whereas MIOX gene disruption protects against, cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/enzimologia , Cisplatino/efeitos adversos , Inositol Oxigenase/deficiência , Animais , Inositol Oxigenase/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos
14.
J Biol Chem ; 291(11): 5688-5707, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26792859

RESUMO

Diabetic nephropathy (DN) is characterized by perturbations in metabolic/cellular signaling pathways with generation of reactive oxygen species (ROS). The ROS are regarded as a common denominator of various pathways, and they inflict injury on renal glomerular cells. Recent studies indicate that tubular pathobiology also plays a role in the progression of DN. However, the mechanism(s) for how high (25 mm) glucose (HG) ambience induces tubular damage remains enigmatic. myo-Inositol oxygenase (MIOX) is a tubular enzyme that catabolizes myo-inositol to d-glucuronate via the glucuronate-xylulose (G-X) pathway. In this study, we demonstrated that G-X pathway enzymes are expressed in the kidney, and MIOX expression/bioactivity was up-regulated under HG ambience in LLC-PK1 cells, a tubular cell line. We further investigated whether MIOX overexpression leads to accentuation of tubulo-interstitial injury, as gauged by some of the parameters relevant to the progression of DN. Under HG ambience, MIOX overexpression accentuated redox imbalance, perturbed NAD(+)/NADH ratios, increased ROS generation, depleted reduced glutathione, reduced GSH/GSSG ratio, and enhanced adaptive changes in the profile of the antioxidant defense system. These changes were also accompanied by mitochondrial dysfunctions, DNA damage and induction of apoptosis, accentuated activity of profibrogenic cytokine, and expression of fibronectin, the latter two being the major hallmarks of DN. These perturbations were largely blocked by various ROS inhibitors (Mito Q, diphenyleneiodonium chloride, and N-acetylcysteine) and MIOX/NOX4 siRNA. In conclusion, this study highlights a novel mechanism where MIOX under HG ambience exacerbates renal injury during the progression of diabetic nephropathy following the generation of excessive ROS via an unexplored G-X pathway.


Assuntos
Nefropatias Diabéticas/patologia , Glucose/metabolismo , Inositol Oxigenase/metabolismo , Rim/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Peróxido de Hidrogênio/metabolismo , Inositol Oxigenase/análise , Inositol Oxigenase/genética , Rim/metabolismo , Células LLC-PK1 , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NAD/metabolismo , Estresse Oxidativo , Suínos , Regulação para Cima
15.
J Biol Chem ; 291(3): 1348-67, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26578517

RESUMO

The kidney is one of the target organs for various metabolic diseases, including diabetes, metabolic syndrome, and obesity. Most of the metabolic studies underscore glomerular pathobiology, although the tubulo-interstitial compartment has been underemphasized. This study highlights mechanisms concerning the pathobiology of tubular injury in the context of myo-inositol oxygenase (Miox), a tubular enzyme. The kidneys of mice fed a high fat diet (HFD) had increased Miox expression and activity, and the latter was related to phosphorylation of serine/threonine residues. Also, expression of sterol regulatory element-binding protein1 (Srebp1) and markers of cellular/nuclear damage was increased along with accentuated apoptosis and loss of tubular brush border. Similar results were observed in cells treated with palmitate/BSA. Multiple sterol-response elements and E-box motifs were found in the miox promoter, and its activity was modulated by palmitate/BSA. Electrophoretic mobility and ChIP assays confirmed binding of Srebp to consensus sequences of the miox promoter. Exposure of palmitate/BSA-treated cells to rapamycin normalized Miox expression and prevented Srebp1 nuclear translocation. In addition, rapamycin treatment reduced p53 expression and apoptosis. Like rapamycin, srebp siRNA reduced Miox expression. Increased expression of Miox was associated with the generation of reactive oxygen species (ROS) in kidney tubules of mice fed an HFD and cell exposed to palmitate/BSA. Both miox and srebp1 siRNAs reduced generation of ROS. Collectively, these findings suggest that HFD or fatty acids modulate transcriptional, translational, and post-translational regulation of Miox expression/activity and underscore Miox being a novel target of the transcription factor Srebp1. Conceivably, activation of the mTORC1/Srebp1/Miox pathway leads to the generation of ROS culminating into tubulo-interstitial injury in states of obesity.


Assuntos
Nefropatias Diabéticas/metabolismo , Inositol Oxigenase/metabolismo , Túbulos Renais/enzimologia , Obesidade/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Regulação para Cima , Animais , Apoptose , Linhagem Celular , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica/efeitos adversos , Humanos , Inositol Oxigenase/antagonistas & inibidores , Inositol Oxigenase/genética , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Obesidade/etiologia , Obesidade/patologia , Oxigenases/antagonistas & inibidores , Oxigenases/genética , Oxigenases/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/metabolismo , Interferência de RNA , Ratos , Proteína de Ligação a Elemento Regulador de Esterol 1/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sus scrofa
16.
J Chem Phys ; 146(19): 194902, 2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28527457

RESUMO

Kubo's fluctuation theory of line shape forms the backbone of our understanding of optical and vibrational line shapes, through such concepts as static heterogeneity and motional narrowing. However, the theory does not properly address the effects of quantum coherences on optical line shape, especially in extended systems where a large number of eigenstates are present. In this work, we study the line shape of an exciton in a one-dimensional lattice consisting of regularly placed and equally separated optical two level systems. We consider both linear array and cyclic ring systems of different sizes. Detailed analytical calculations of line shape have been carried out by using Kubo's stochastic Liouville equation (SLE). We make use of the observation that in the site representation, the Hamiltonian of our system with constant off-diagonal coupling J is a tridiagonal Toeplitz matrix (TDTM) whose eigenvalues and eigenfunctions are known analytically. This identification is particularly useful for long chains where the eigenvalues of TDTM help understanding crossover between static and fast modulation limits. We summarize the new results as follows. (i) In the slow modulation limit when the bath correlation time is large, the effects of spatial correlation are not negligible. Here the line shape is broadened and the number of peaks increases beyond the ones obtained from TDTM (constant off-diagonal coupling element J and no fluctuation). (ii) However, in the fast modulation limit when the bath correlation time is small, the spatial correlation is less important. In this limit, the line shape shows motional narrowing with peaks at the values predicted by TDTM (constant J and no fluctuation). (iii) Importantly, we find that the line shape can capture that quantum coherence affects in the two limits differently. (iv) In addition to linear chains of two level systems, we also consider a cyclic tetramer. The cyclic polymers can be designed for experimental verification. (v) We also build a connection between line shape and population transfer dynamics. In the fast modulation limit, both the line shape and the population relaxation, for both correlated and uncorrelated bath, show similar behavior. However, in slow modulation limit, they show profoundly different behavior. (vi) This study explains the unique role of the rate of fluctuation (inverse of the bath correlation time) in the sustenance and propagation of coherence. We also examine the effects of off-diagonal fluctuation in spectral line shape. Finally, we use Tanimura-Kubo formalism to derive a set of coupled equations to include temperature effects (partly neglected in the SLE employed here) and effects of vibrational mode in energy transfer dynamics.

17.
J Chem Phys ; 145(16): 164907, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27802628

RESUMO

We study excitation transfer and migration in a one-dimensional lattice characterized by dynamic disorder. The diagonal and off-diagonal energy disorders arise from the coupling of system and bath. We consider both same bath (when baths are spatially correlated) and independent bath (when baths are completely uncorrelated) limits. In the latter case, all diagonal and off-diagonal bath coupling elements fluctuate independently of each other and the dynamics is complicated. We obtain time dependent population distribution by solving Kubo's quantum stochastic Liouville equation. In the Markovian limit, both energy transfer dynamics and mean square displacement of the exciton behave the similar way in same and independent bath cases. However, these two baths can give rise to a markedly different behavior in the non-Markovian limit. We note that previously only the same bath case has been studied in the non-Markovian limit. The other main results of our study include the following. (i) For an average, non-zero off-diagonal coupling value J, exciton migration remains coherent in same bath case even at long times while it becomes incoherent in independent bath case in the Markovian limit. (ii) Coherent transfer is manifested in an oscillatory behavior of the energy transfer dynamics accompanied by faster-than diffusive spread of the exciton from the original position. (iii) Agreement with available analytical expression of mean squared displacement is good in Markovian limit for independent bath (off-diagonal fluctuation) case but only qualitative in non-Markovian limit for which no complete analytical solution is available. (iv) We observe transition from coherent to incoherent transport in independent bath (diagonal fluctuation) case when the bath is made progressively more Markovian. We present an analytical study that shows coherence to propagate through excited bath states. (v) The correlation time of the bath plays a unique role in dictating the diffusive spread that is not anticipated in a Markovian treatment.

19.
Biochim Biophys Acta ; 1840(12): 3374-84, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218692

RESUMO

BACKGROUND: Gambogic acid is a potent anticancer agent and has been found effective against various types of cancer cells. The present study was addressed to explore the cytotoxic potential of Gambogic acid and the modulation of autophagy and apoptosis in bladder cancer cells T24 and UMUC3. METHODS: Bladder cancer cell lines T24 and UMUC3 were treated with Gambogic acid, apoptosis was checked by flow-cytometry and expression of various autophagy and apoptosis related proteins was monitored by Western blotting. Confocal microscope was used for colocalization of p62 and Beclin-1. RESULTS: Gambogic acid induces reactive oxygen species, and elicits a strong autophagic response by activating JNK at earlier time points, which is inhibited at later time points with the activation of caspases. Reactive oxygen species mediated caspase activation causes degradation of autophagic proteins, cleavage of molecular chaperones (Hsp90 and GRP-78) and adaptor proteins (p62 and NBR1). Gambogic acid treatment results in mitochondrial hyperpolarization and cytochrome c release and activates caspases involved in both extrinsic and intrinsic apoptotic pathways. Gambogic acid abrogates NF-κB activation by ROS mediated inhibition of IκB-α phosphorylation. Functionally Gambogic acid induced autophagy acts as a strong cell survival response and delays caspase activation. CONCLUSION: Our study provides the new insights about the mechanism of Gambogic acid induced modulation of autophagy and apoptosis in bladder cancer cells. All the molecular events responsible for Gambogic acid induced autophagy and apoptosis are mediated by reactive oxygen species. GENERAL SIGNIFICANCE: Since Gambogic acid targets various cell survival molecules therefore, it may be considered as a potential anticancer agent against bladder cancer.

20.
Hepatol Commun ; 8(5)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619452

RESUMO

HSCs, the resident pericytes of the liver, have consistently been at the forefront of liver research due to their crucial roles in various hepatic pathological processes. Prior literature often depicted HSCs in a binary framework, categorizing them as either quiescent or activated. However, recent advances in HSC research, particularly the advent of single-cell RNA-sequencing, have revolutionized our understanding of these cells. This sophisticated technique offers an unparalleled, high-resolution insight into HSC populations, uncovering a spectrum of diversity and functional heterogeneity across various physiological states of the liver, ranging from liver development to the liver aging process. The single-cell RNA-sequencing revelations have also highlighted the intrinsic plasticity of HSCs and underscored their complex roles in a myriad of pathophysiological processes, including liver injury, repair, and carcinogenesis. This review aims to integrate and clarify these recent discoveries, focusing on how the inherent plasticity of HSCs is central to their dynamic roles both in maintaining liver homeostasis and orchestrating responses to liver injury. Future research will clarify whether findings from rodent models can be translated to human livers and guide how these insights are harnessed to develop targeted therapeutic interventions.


Assuntos
Células Estreladas do Fígado , Fígado , Humanos , Carcinogênese , Homeostase , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA