Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Magn Reson Med ; 91(5): 1834-1862, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38247051

RESUMO

This article provides recommendations for implementing QSM for clinical brain research. It is a consensus of the International Society of Magnetic Resonance in Medicine, Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available have generated a need in the neuroimaging community for guidelines on implementation. This article outlines considerations and implementation recommendations for QSM data acquisition, processing, analysis, and publication. We recommend that data be acquired using a monopolar 3D multi-echo gradient echo (GRE) sequence and that phase images be saved and exported in Digital Imaging and Communications in Medicine (DICOM) format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background field removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields within the brain mask should be removed using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of the whole brain as a region of interest in the analysis. The minimum acquisition and processing details required when reporting QSM results are also provided. These recommendations should facilitate clinical QSM research and promote harmonized data acquisition, analysis, and reporting.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Consenso , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cabeça , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mapeamento Encefálico/métodos
2.
Neuroimage ; 270: 119992, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36858332

RESUMO

MR images of the effective relaxation rate R2* and magnetic susceptibility χ derived from multi-echo T2*-weighted (T2*w) MRI can provide insight into iron and myelin distributions in the brain, with the potential of providing biomarkers for neurological disorders. Quantification of R2* and χ at submillimeter resolution in the cortex in vivo has been difficult because of challenges such as head motion, limited signal to noise ratio, long scan time, and motion related magnetic field fluctuations. This work aimed to improve the robustness for quantifying intracortical R2* and χ and analyze the effects from motion, spatial resolution, and cortical orientation. T2*w data was acquired with a spatial resolution of 0.3 × 0.3 × 0.4 mm3 at 7 T and downsampled to various lower resolutions. A combined correction for motion and B0 changes was deployed using volumetric navigators. Such correction improved the T2*w image quality rated by experienced image readers and test-retest reliability of R2* and χ quantification with reduced median inter-scan differences up to 10 s-1 and 5 ppb, respectively. R2* and χ near the line of Gennari, a cortical layer high in iron and myelin, were as much as 10 s-1 and 10 ppb higher than the region at adjacent cortical depth. In addition, a significant effect due to the cortical orientation relative to the static field (B0) was observed in χ with a peak-to-peak amplitude of about 17 ppb. In retrospectively downsampled data, the capability to distinguish different cortical depth regions based on R2* or χ contrast remained up to isotropic 0.5 mm resolution. This study highlights the unique characteristics of R2* and χ along the cortical depth at submillimeter resolution and the need for motion and B0 corrections for their robust quantification in vivo.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
3.
Neuroimage ; 258: 119362, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35688316

RESUMO

Cerebrospinal fluid (CSF) provides physical protection to the central nervous system as well as an essential homeostatic environment for the normal functioning of neurons. Additionally, it has been proposed that the pulsatile movement of CSF may assist in glymphatic clearance of brain metabolic waste products implicated in neurodegeneration. In awake humans, CSF flow dynamics are thought to be driven primarily by cerebral blood volume fluctuations resulting from a number of mechanisms, including a passive vascular response to blood pressure variations associated with cardiac and respiratory cycles. Recent research has shown that mechanisms that rely on the action of vascular smooth muscle cells ("cerebrovascular activity") such as neuronal activity, changes in intravascular CO2, and autonomic activation from the brainstem, may lead to CSF pulsations as well. Nevertheless, the relative contribution of these mechanisms to CSF flow remains unclear. To investigate this further, we developed an MRI approach capable of disentangling and quantifying CSF flow components of different time scales associated with these mechanisms. This approach was evaluated on human control subjects (n = 12) performing intermittent voluntary deep inspirations, by determining peak flow velocities and displaced volumes between these mechanisms in the fourth ventricle. We found that peak flow velocities were similar between the different mechanisms, while displaced volumes per cycle were about a magnitude larger for deep inspirations. CSF flow velocity peaked at around 10.4 s (range 7.1-14.8 s, n = 12) following deep inspiration, consistent with known cerebrovascular activation delays for this autonomic challenge. These findings point to an important role of cerebrovascular activity in the genesis of CSF pulsations. Other regulatory triggers for cerebral blood flow such as autonomic arousal and orthostatic challenges may create major CSF pulsatile movement as well. Future quantitative comparison of these and possibly additional types of CSF pulsations with the proposed approach may help clarify the conditions that affect CSF flow dynamics.


Assuntos
Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Tronco Encefálico , Líquido Cefalorraquidiano/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Fluxo Pulsátil/fisiologia
4.
Neuroimage ; 249: 118888, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017126

RESUMO

During sleep, slow waves of neuro-electrical activity engulf the human brain and aid in the consolidation of memories. Recent research suggests that these slow waves may also promote brain health by facilitating the removal of metabolic waste, possibly by orchestrating the pulsatile flow of cerebrospinal fluid (CSF) through local neural control over vascular tone. To investigate the role of slow waves in the generation of CSF pulsations, we analyzed functional MRI data obtained across the full sleep-wake cycle and during a waking respiratory task. This revealed a novel generating mechanism that relies on the autonomic regulation of cerebral vascular tone without requiring slow electrocortical activity or even sleep. Therefore, the role of CSF pulsations in brain waste clearance may, in part, depend on proper autoregulatory control of cerebral blood flow.


Assuntos
Nível de Alerta/fisiologia , Sistema Nervoso Autônomo/fisiologia , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/fisiologia , Fluxo Pulsátil/fisiologia , Fases do Sono/fisiologia , Adulto , Humanos , Imageamento por Ressonância Magnética
5.
Neuroimage ; 264: 119720, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332366

RESUMO

Resting-state functional magnetic resonance imaging (rsfMRI) allows the study of functional brain connectivity based on spatially structured variations in neuronal activity. Proper evaluation of connectivity requires removal of non-neural contributions to the fMRI signal, in particular hemodynamic changes associated with autonomic variability. Regression analysis based on autonomic indicator signals has been used for this purpose, but may be inadequate if neuronal and autonomic activities covary. To investigate this potential co-variation, we performed rsfMRI experiments while concurrently acquiring electroencephalography (EEG) and autonomic indicator signals, including heart rate, respiratory depth, and peripheral vascular tone. We identified a recurrent and systematic spatiotemporal pattern of fMRI (named as fMRI cascade), which features brief signal reductions in salience and default-mode networks and the thalamus, followed by a biphasic global change with a sensory-motor dominance. This fMRI cascade, which was mostly observed during eyes-closed condition, was accompanied by large EEG and autonomic changes indicative of arousal modulations. Importantly, the removal of the fMRI cascade dynamics from rsfMRI diminished its correlations with various signals. These results suggest that the rsfMRI correlations with various physiological and neural signals are not independent but arise, at least partly, from the fMRI cascades and associated neural and physiological changes at arousal modulations.


Assuntos
Mapeamento Encefálico , Descanso , Humanos , Mapeamento Encefálico/métodos , Descanso/fisiologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
6.
Hum Brain Mapp ; 43(5): 1766-1782, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34957633

RESUMO

Outliers in neuroimaging represent spurious data or the data of unusual phenotypes that deserve special attention such as clinical follow-up. Outliers have usually been detected in a supervised or semi-supervised manner for labeled neuroimaging cohorts. There has been much less work using unsupervised outlier detection on large unlabeled cohorts like the UK Biobank brain imaging dataset. Given its large sample size, rare imaging phenotypes within this unique cohort are of interest, as they are often clinically relevant and could be informative for discovering new processes. Here, we developed a two-level outlier detection and screening methodology to characterize individual outliers from the multimodal MRI dataset of more than 15,000 UK Biobank subjects. In primary screening, using brain ventricles, white matter, cortical thickness, and functional connectivity-based imaging phenotypes, every subject was parameterized with an outlier score per imaging phenotype. Outlier scores of these imaging phenotypes had good-to-excellent test-retest reliability, with the exception of resting-state functional connectivity (RSFC). Due to the low reliability of RSFC outlier scores, RSFC outliers were excluded from further individual-level outlier screening. In secondary screening, the extreme outliers (1,026 subjects) were examined individually, and those arising from data collection/processing errors were eliminated. A representative subgroup of 120 subjects from the remaining non-artifactual outliers were radiologically reviewed, and radiological findings were identified in 97.5% of them. This study establishes an unsupervised framework for investigating rare individual imaging phenotypes within a large neuroimaging cohort.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem/métodos , Fenótipo , Reprodutibilidade dos Testes
7.
NMR Biomed ; 35(8): e4730, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297114

RESUMO

Manually segmenting multiple sclerosis (MS) cortical lesions (CLs) is extremely time consuming, and past studies have shown only moderate inter-rater reliability. To accelerate this task, we developed a deep-learning-based framework (CLAIMS: Cortical Lesion AI-Based Assessment in Multiple Sclerosis) for the automated detection and classification of MS CLs with 7 T MRI. Two 7 T datasets, acquired at different sites, were considered. The first consisted of 60 scans that include 0.5 mm isotropic MP2RAGE acquired four times (MP2RAGE×4), 0.7 mm MP2RAGE, 0.5 mm T2 *-weighted GRE, and 0.5 mm T2 *-weighted EPI. The second dataset consisted of 20 scans including only 0.75 × 0.75 × 0.9 mm3 MP2RAGE. CLAIMS was first evaluated using sixfold cross-validation with single and multi-contrast 0.5 mm MRI input. Second, the performance of the model was tested on 0.7 mm MP2RAGE images after training with either 0.5 mm MP2RAGE×4, 0.7 mm MP2RAGE, or alternating the two. Third, its generalizability was evaluated on the second external dataset and compared with a state-of-the-art technique based on partial volume estimation and topological constraints (MSLAST). CLAIMS trained only with MP2RAGE×4 achieved results comparable to those of the multi-contrast model, reaching a CL true positive rate of 74% with a false positive rate of 30%. Detection rate was excellent for leukocortical and subpial lesions (83%, and 70%, respectively), whereas it reached 53% for intracortical lesions. The correlation between disability measures and CL count was similar for manual and CLAIMS lesion counts. Applying a domain-scanner adaptation approach and testing CLAIMS on the second dataset, the performance was superior to MSLAST when considering a minimum lesion volume of 6 µL (lesion-wise detection rate of 71% versus 48%). The proposed framework outperforms previous state-of-the-art methods for automated CL detection across scanners and protocols. In the future, CLAIMS may be useful to support clinical decisions at 7 T MRI, especially in the field of diagnosis and differential diagnosis of MS patients.


Assuntos
Aprendizado Profundo , Esclerose Múltipla , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Reprodutibilidade dos Testes
8.
Mult Scler ; 28(9): 1351-1363, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35142571

RESUMO

BACKGROUND: Dramatic improvements in visualization of cortical (especially subpial) multiple sclerosis (MS) lesions allow assessment of impact on clinical course. OBJECTIVE: Characterize cortical lesions by 7 tesla (T) T2*-/T1-weighted magnetic resonance imaging (MRI); determine relationship with other MS pathology and contribution to disability. METHODS: Sixty-four adults with MS (45 relapsing-remitting/19 progressive) underwent 3 T brain/spine MRI, 7 T brain MRI, and clinical testing. RESULTS: Cortical lesions were found in 94% (progressive: median 56/range 2-203; relapsing-remitting: 15/0-168; p = 0.004). Lesion distribution across 50 cortical regions was nonuniform (p = 0.006), with highest lesion burden in supplementary motor cortex and highest prevalence in superior frontal gyrus. Leukocortical and white matter lesion volumes were strongly correlated (r = 0.58, p < 0.0001), while subpial and white matter lesion volumes were moderately correlated (r = 0.30, p = 0.002). Leukocortical (p = 0.02) but not subpial lesions (p = 0.40) were correlated with paramagnetic rim lesions; both were correlated with spinal cord lesions (p = 0.01). Cortical lesion volumes (total and subtypes) were correlated with expanded disability status scale, 25-foot timed walk, nine-hole peg test, and symbol digit modality test scores. CONCLUSION: Cortical lesions are highly prevalent and are associated with disability and progressive disease. Subpial lesion burden is not strongly correlated with white matter lesions, suggesting differences in inflammation and repair mechanisms.


Assuntos
Pessoas com Deficiência , Esclerose Múltipla , Substância Branca , Adulto , Encéfalo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Substância Branca/patologia
9.
Neuroimage ; 242: 118455, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364993

RESUMO

The increased availability of ultra-high field scanners provides an opportunity to perform fMRI at sub-millimeter spatial scales and enables in vivo probing of laminar function in the human brain. In most previous studies, the definition of cortical layers, or depths, is based on an anatomical reference image that is collected by a different acquisition sequence and exhibits different geometric distortion compared to the functional images. Here, we propose to generate the anatomical image with the fMRI acquisition technique by incorporating magnetization transfer (MT) weighted imaging. Small flip angle binomial pulse trains are used as MT preparation, with a flexible duration (several to tens of milliseconds), which can be applied before each EPI segment without constraining the acquisition length (segment or slice number). The method's feasibility was demonstrated at 7T for coverage of either a small slab or the near-whole brain at 0.8 mm isotropic resolution. Tissue contrast was found to be similar to that obtained with a state-of-art anatomical reference based on MP2RAGE. This MT-weighted EPI image allows an automatic reconstruction of the cortical surface to support laminar analysis in native fMRI space, obviating the need for distortion correction and registration.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Imagem Ecoplanar/métodos , Mapeamento Encefálico/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
10.
Magn Reson Med ; 85(6): 3196-3210, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480108

RESUMO

PURPOSE: Low-field (<1 tesla) MRI scanners allow more widespread diagnostic use for a range of cardiac, musculoskeletal, and neurological applications. However, the feasibility of performing robust fMRI at low field has yet to be fully demonstrated. To address this gap, we investigated task-based fMRI using a highly sensitive transition-band balanced steady-state free precession approach and standard EPI on a 0.55 tesla scanner equipped with modern high-performance gradient coils and a receive array. METHODS: TR and flip-angle of transition-band steady-state free precession were optimized for 0.55 tesla by simulations. Static shimming was employed to compensate for concomitant field effects. Visual task-based fMRI data were acquired from 8 healthy volunteers. For comparison, standard EPI data were also acquired with TE = T2∗ . Retrospective image-based correction for physiological effects (RETROICOR) was used to quantify physiological noise effects. RESULTS: Activation was robustly detected using both methods in a 4-min scan time. Transition-band steady-state free precession was found to be sensitive to interference from subtle spatial and temporal (field drift, respiration) variations in the magnetic field, counteracting potential advantages of the reduced magnetic susceptibility effects compared to its utilization at high field. These adverse effects could be partially remedied with static shimming and postprocessing approaches. Standard EPI proved more robust against the sources of interference. CONCLUSION: BOLD contrast is sufficiently large at 0.55 tesla for robust detection of brain activation and may be employed to broaden the spectrum of applications of low-field MRI. Standard EPI outperforms transition-band steady-state free precession in terms of signal stability.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Estudos Retrospectivos
11.
Neuroimage ; 213: 116700, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145438

RESUMO

Tissue longitudinal relaxation characterized by recovery time T1 or rate R1 is a fundamental MRI contrast mechanism that is increasingly being used to study the brain's myelination patterns in both health and disease. Nevertheless, the quantitative relationship between T1 and myelination, and its dependence on B0 field strength, is still not well known. It has been theorized that in much of brain tissue, T1 field-dependence is driven by that of macromolecular protons (MP) through a mechanism called magnetization transfer (MT). Despite the explanatory power of this theory and substantial support from in-vitro experiments at low fields (<3 â€‹T), in-vivo evidence across clinically relevant field strengths is lacking. In this study, T1-weighted MRI was acquired in a group of eight healthy volunteers at four clinically relevant field strengths (0.55, 1.5, 3 and 7 â€‹T) using the same pulse sequence at a single site, and jointly analyzed based on the two-pool model of MT. MP fraction and free-water pool T1 were obtained in several brain structures at 3 and 7 â€‹T, which allowed distinguishing between contributions from macromolecular content and iron to tissue T1. Based on this, the T1 of MP in white matter, indirectly determined by assuming a field independent T1 of free water, was shown to increase approximately linearly with B0. This study advances our understanding of the T1 contrast mechanism and its relation to brain myelin content across the wide range of currently available MRI strengths, and it has the potential to inform design of T1 mapping methods for improved reproducibility in the human brain.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos
12.
Neuroimage ; 206: 116332, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689535

RESUMO

T2*-weighted gradient echo (GRE) MRI at high field is uniquely sensitive to the magnetic properties of tissue and allows the study of brain and vascular anatomy at high spatial resolution. However, it is also sensitive to B0 field changes induced by head motion and physiological processes such as the respiratory cycle. Conventional motion correction techniques do not take these field changes into account, and consequently do not fully recover image quality in T2*-weighted MRI. Here, a novel approach was developed to address this by monitoring the B0 field with a volumetric EPI phase navigator. The navigator was acquired at a shorter echo time than that of the (higher resolution) T2*-weighted GRE imaging data and accelerated with parallel imaging for high temporal resolution. At 4 â€‹mm isotropic spatial resolution and 0.54 â€‹s temporal resolution, the accuracy for estimation of rotation and translation was better than 0.2° and 0.1 â€‹mm, respectively. The 10% and 90% percentiles of B0 measurement error using the navigator were -1.8 and 1.5 Hz  at 7 T, respectively. A fast retrospective reconstruction algorithm correcting for both motion and nonlinear B0 changes was also developed. The navigator and reconstruction algorithm were evaluated in correcting motion-corrupted high-resolution T2*-weighted GRE MRI on healthy human subjects at 7 â€‹T. Excellent image quality was demonstrated with the proposed correction method.


Assuntos
Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Movimento , Humanos , Campos Magnéticos , Movimento (Física) , Rotação
13.
Magn Reson Med ; 83(3): 883-891, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31502706

RESUMO

PURPOSE: Up to 30% of the hydrogen atoms in brain tissue are part of molecules ("semisolids") other than water. In MRI, their magnetization is typically not observed directly, but can influence the water magnetization through magnetization transfer (MT). Comparison of MRI scans differentially sensitized to MT allows estimation of the semisolid fraction and potential changes with disease. Here, we present an approach designed to improve this estimate by measuring the size of the MT effect in a single scan. METHODS: A stimulated echo sequence was used to generate a spatial pattern in the longitudinal water magnetization, which was then given time to exchange with semisolids. After saturating the remaining water magnetization, reverse exchange was allowed to partly re-establish the original water magnetization pattern. The third excitation pulse then formed a stimulated echo out of this pattern. RESULTS: MT data were obtained on 10 human subjects at 7 T with varying exchange times. The images showed the expected time dependence of signal associated with the forward and reverse exchange processes. Excellent suppression of non-exchanging background signal was achieved. As expected, this suppression came at the price of a substantial reduction in exchange-related signal (by ~75% compared to the signal in saturation recovery MT), in part because of the reliance on a 2-step exchange process. CONCLUSION: The results demonstrate an MT signal can be observed in a single acquisition without subtraction. This may be advantageous for MT measurements when signal instabilities related to motion and physiological variations exceed thermal noise sources.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Algoritmos , Humanos , Hidrogênio , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Magnetismo , Movimento (Física) , Razão Sinal-Ruído , Água , Adulto Jovem
14.
Magn Reson Med ; 84(6): 3494-3501, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32662913

RESUMO

PURPOSE: To demonstrate a practical implementation of an eight-channel parallel-transmit system for brain imaging at 7 T based on on-coil amplifier technology. METHODS: An eight-channel parallel transmit-receive system was built with optimized on-coil switch-mode current RF power amplifiers. The amplifiers were optically controlled from an eight-channel interface that was connected to a 7 T MRI scanner. The interface also optically received a down-converted version of the coil current sensed in each amplifier for monitoring and feedback adjustments. RESULTS: Each on-coil amplifier delivered more than 100 W peak power and provided enough amplifier decoupling (<-15 dB) for the implemented eight-channel array configuration. Phantom and human images were acquired to demonstrate practical operation of this new technology in a 7 T MRI scanner. CONCLUSION: Further development and improvement of previously demonstrated on-coil technology led to successful implementation of an eight-channel parallel-transmit system able to deliver strong B1 fields for typical brain imaging applications. This is an important step forward toward implementation of on-coil RF amplification for high-field MRI.


Assuntos
Amplificadores Eletrônicos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Ondas de Rádio
15.
Magn Reson Med ; 81(1): 628-638, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230605

RESUMO

PURPOSE: Magnetization exchange (ME) between hydrogen protons of water and large molecules (semisolids [SS]) in lipid bilayers is an important factor in MRI signal generation and can be exploited to study white matter pathology. Current models used to quantify ME in white matter generally consider water to reside in 1 or 2 distinct compartments, ignoring the complexities of the myelin sheath's multicompartment structure of alternating myelin SS and myelin water (MW) layers. Here, we investigated the effect of this by fitting ME data obtained from human brain at 7 T with a multilayer model of myelin. METHODS: A multi-echo acquisition for a T2* -based separation of MW from other water signals was combined with various preparation pulses to change the (relative) state of the SS and water pools and analyzed by fitting with a multilayer exchange model. RESULTS: The estimated lifetime within a single MW layer was 260 µs, corresponding to a lipid bilayer permeability of 6.7 µm/s. The magnetization lifetime of the aggregate of all MW was estimated at 13 ms, shorter than previously reported values in the range of 40 to 140 ms. CONCLUSION: Contrary to expectations and previous reports, ME between protons in myelin SS and water is not limited by the myelin sheath but rather by the exchange between SS and water protons. The analysis of ME contrast should account for the relatively short MW lifetime and affects the interpretation of tissue compartmentalization from MRI contrasts such as T1 - and diffusion-weighting.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina/química , Bainha de Mielina/patologia , Substância Branca/diagnóstico por imagem , Adulto , Algoritmos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Permeabilidade , Prótons , Água/análise , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 113(16): 4518-23, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27051064

RESUMO

Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker.


Assuntos
Nível de Alerta/fisiologia , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Macaca , Imageamento por Ressonância Magnética , Radiografia
17.
Neuroimage ; 168: 152-161, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28242317

RESUMO

A rapidly developing application of high field MRI is the study of brain anatomy and function with contrast based on the magnetic susceptibility of tissues. To study the subtle variations in susceptibility contrast between tissues and with changes in brain activity, dedicated scan techniques such as susceptibility-weighted MRI and blood-oxygen level dependent functional MRI have been developed. Particularly strong susceptibility contrast has been observed with systems that operate at 7T and above, and their recent widespread use has led to an improved understanding of contributing sources and mechanisms. To interpret magnetic susceptibility contrast, analysis approaches have been developed with the goal of extracting measures that report on local tissue magnetic susceptibility, a physical quantity that, under certain conditions, allows estimation of blood oxygenation, local tissue iron content, and quantification of its changes with disease. Interestingly, high field studies have also brought to light that not only the makeup of tissues affects MRI susceptibility contrast, but that also a tissue's sub-voxel structure at scales all the way down to the molecular level plays an important role as well. In this review, various ways will be discussed by which sub-voxel structure can affect the MRI signal in general, and magnetic susceptibility in particular, sometimes in a complex fashion. In the light of this complexity, it appears likely that accurate, brain-wide quantification of iron will require the combination of multiple contrasts that may include diffusion and magnetization transfer information with susceptibility-weighted contrast. On the other hand, this complexity also offers opportunities to use magnetic susceptibility contrast to inform about specific microstructural aspects of brain tissue. Details and several examples will be presented in this review.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Ferritinas , Fenômenos Magnéticos , Imageamento por Ressonância Magnética/métodos , Fibras Nervosas Mielinizadas , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Córtex Cerebral/metabolismo , Humanos , Substância Branca/metabolismo
18.
Neuroimage ; 180(Pt B): 485-494, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355767

RESUMO

The brain is a complex system that integrates and processes information across multiple time scales by dynamically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at single time points. Here, we review the development and recent advancement of CAP methodology and other closely related approaches, as well as their applications and associated findings. We also discuss the potential neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions in the analysis of fMRI co-activation patterns.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Descanso/fisiologia
19.
Neuroimage ; 181: 292-300, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981905

RESUMO

Recent advances in BOLD fMRI scan techniques have substantially improved spatial and temporal resolution, currently reaching to sub-millimeter and sub-second levels respectively. Unfortunately, there remain physiological barriers that prevent achieving this resolution in practice. BOLD contrast relies on the hemodynamic response to neuronal activity, whose associated cerebral blood oxygenation (CBO) changes may spread over several millimeters and last several seconds. Recent reports have suggested that significant improvements may be possible with cerebral blood volume (CBV)-weighted fMRI, which highlights the CBV changes rather than the BOLD changes associated with the hemodynamic response. Nevertheless, quantitative comparisons between CBV and BOLD are sparse, in particular regarding their temporal characteristics in human brain. To address this, we studied a cohort of subjects that received injection of ferumoxytol, an intravascular iron-oxide based contrast agent that introduces strong CBV contrast. An event-related visual stimulus paradigm was used to compare the impulse response (IR) for CBV and BOLD contrast, obtained with and without ferumoxytol, respectively. Experiments performed at 7 T (n = 5) at 1.2-1.5 mm spatial and 1 s temporal resolution showed that the onset time and time-to-peak of the CBV IR averaged 0.8 and 3.5 s respectively, both 0.6 s shorter than the BOLD IR. While significant, these improvements are relatively small and not expected to lead to practical advantages for the extraction of temporal information about neural activity. Nonlinearities in the observed IR were also compared and found to be similar between the CBV and BOLD, indicating that these are likely not caused by a 'ceiling' effect in the CBO response, but rather support a previously proposed model of vascular compliance, in which changes in vascular tone elicited by a preceding stimulus affect the IR.


Assuntos
Volume Sanguíneo Cerebral/fisiologia , Neuroimagem Funcional/métodos , Aumento da Imagem/métodos , Comportamento Impulsivo/fisiologia , Imageamento por Ressonância Magnética/métodos , Acoplamento Neurovascular/fisiologia , Oxigênio/sangue , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adulto , Meios de Contraste/administração & dosagem , Óxido Ferroso-Férrico/administração & dosagem , Humanos , Fatores de Tempo
20.
Neuroimage ; 176: 541-549, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29704614

RESUMO

To investigate a potential contribution of systemic physiology to recently reported BOLD fMRI signals in white matter, we compared photo-plethysmography (PPG) and whole-brain fMRI signals recorded simultaneously during long resting-state scans from an overnight sleep study. We found that intermittent drops in the amplitude of the PPG signal exhibited strong and widespread correlations with the fMRI signal, both in white matter (WM) and in gray matter (GM). The WM signal pattern resembled that seen in previous resting-state fMRI studies and closely tracked the location of medullary veins. Its temporal cross-correlation with the PPG amplitude was bipolar, with an early negative value. In GM, the correlation was consistently positive. Consistent with previous studies comparing physiological signals with fMRI, these findings point to a systemic vascular contribution to WM fMRI signals. The PPG drops are interpreted as systemic vasoconstrictive events, possibly related to intermittent increases in sympathetic tone related to fluctuations in arousal state. The counter-intuitive polarity of the WM signal is explained by long blood transit times in the medullary vasculature of WM, which cause blood oxygenation loss and a substantial timing mismatch between blood volume and blood oxygenation effects. A similar mechanism may explain previous findings of negative WM signals around large draining veins during both task- and resting-state fMRI.


Assuntos
Neuroimagem Funcional/métodos , Substância Cinzenta/fisiologia , Acoplamento Neurovascular/fisiologia , Fotopletismografia/métodos , Vasoconstrição/fisiologia , Substância Branca/fisiologia , Adulto , Veias Cerebrais/fisiologia , Eletroencefalografia , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Bulbo/irrigação sanguínea , Sono/fisiologia , Fatores de Tempo , Substância Branca/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA