Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(48): 30687-30698, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184176

RESUMO

The SARS-CoV-2 pandemic has made it clear that we have a desperate need for antivirals. We present work that the mammalian SKI complex is a broad-spectrum, host-directed, antiviral drug target. Yeast suppressor screening was utilized to find a functional genetic interaction between proteins from influenza A virus (IAV) and Middle East respiratory syndrome coronavirus (MERS-CoV) with eukaryotic proteins that may be potential host factors involved in replication. This screening identified the SKI complex as a potential host factor for both viruses. In mammalian systems siRNA-mediated knockdown of SKI genes inhibited replication of IAV and MERS-CoV. In silico modeling and database screening identified a binding pocket on the SKI complex and compounds predicted to bind. Experimental assays of those compounds identified three chemical structures that were antiviral against IAV and MERS-CoV along with the filoviruses Ebola and Marburg and two further coronaviruses, SARS-CoV and SARS-CoV-2. The mechanism of antiviral activity is through inhibition of viral RNA production. This work defines the mammalian SKI complex as a broad-spectrum antiviral drug target and identifies lead compounds for further development.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Filoviridae/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Orthomyxoviridae/efeitos dos fármacos , Linhagem Celular , Genes Supressores , Modelos Moleculares , Terapia de Alvo Molecular , Ligação Proteica , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
PLoS Pathog ; 14(9): e1007322, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30265711

RESUMO

Lassa fever virus (LASV) is endemic in West Africa and causes severe hemorrhagic fever and sensorineural hearing loss. We identified a small molecule inhibitor of LASV and used it to analyze the mechanism of entry. Using a photo-reactive analog that retains antiviral activity as a probe, we identified the inhibitor target as lysosome-associated membrane protein 1 (LAMP1), a host factor that binds to the LASV glycoprotein (GP) during infection. We found that LAMP1 binding to LASV GP is cholesterol-dependent, and that the inhibitor blocks infection by competing with cholesterol in LAMP1. Mutational analysis of a docking-based model identified a putative inhibitor binding site in the cholesterol-binding pocket within the LAMP1 domain that binds GP. These findings identify a critical role for cholesterol in LASV entry and a potential target for therapeutic intervention.


Assuntos
Colesterol/metabolismo , Vírus Lassa/fisiologia , Vírus Lassa/patogenicidade , Proteínas de Membrana Lisossomal/fisiologia , Receptores Virais/fisiologia , Adamantano/análogos & derivados , Adamantano/química , Adamantano/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Febre Lassa/etiologia , Vírus Lassa/efeitos dos fármacos , Proteínas de Membrana Lisossomal/antagonistas & inibidores , Proteínas de Membrana Lisossomal/genética , Modelos Moleculares , Mutação , Estabilidade Proteica , Estrutura Terciária de Proteína , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Internalização do Vírus/efeitos dos fármacos
3.
J Infect Dis ; 218(suppl_5): S588-S591, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29982632

RESUMO

No therapeutics are approved for the treatment of filovirus infections. Bepridil, a calcium channel blocker developed for treating angina, was identified as a potent inhibitor of filoviruses in vitro, including Ebola and Marburg viruses, and Ebola virus in vivo. We evaluated the efficacy of bepridil in a lethal mouse model of Marburg virus disease. A dose of 12 mg/kg bepridil once or twice daily resulted in 80% or 90% survival, respectively. These data confirm bepridil's broad-spectrum anti-filovirus activity warranting further investigation of bepridil, or improved compounds with a similar mechanism, as a pan-filovirus therapeutic agent.


Assuntos
Bepridil/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Doença do Vírus de Marburg/tratamento farmacológico , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Doença do Vírus de Marburg/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Células Vero
4.
J Infect Dis ; 218(suppl_5): S592-S596, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30016444

RESUMO

At the onset of the 2013-2016 epidemic of Ebola virus disease (EVD), no vaccine or antiviral medication was approved for treatment. Therefore, considerable efforts were directed towards the concept of drug repurposing or repositioning. Amiodarone, an approved multi-ion channel blocker for the treatment of cardiac arrhythmia, was reported to inhibit filovirus entry in vitro. Compassionate use of amiodarone in EVD patients indicated a possible survival benefit. In support of further clinical testing, we confirmed anti-Ebola virus activity of amiodarone in different cell types. Despite promising in vitro results, amiodarone failed to protect guinea pigs from a lethal dose of Ebola virus.


Assuntos
Amiodarona/farmacologia , Ebolavirus/efeitos dos fármacos , Amiodarona/farmacocinética , Amiodarona/uso terapêutico , Animais , Chlorocebus aethiops , Feminino , Cobaias , Doença pelo Vírus Ebola/tratamento farmacológico , Masculino , Células Vero
5.
J Infect Dis ; 218(suppl_5): S672-S678, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29939303

RESUMO

Background: A need to develop therapeutics to treat Ebola virus disease patients in remote and resource-challenged settings remains in the wake of the 2013-2016 epidemic in West Africa. Toward this goal, we screened drugs under consideration as treatment options and other drugs of interest, most being small molecules approved by the Food and Drug Administration. Drugs demonstrating in vitro antiviral activity were advanced for evaluation in combinations because of advantages often provided by drug cocktails. Methods: Drugs were screened for blockade of Ebola virus infection in cultured cells. Twelve drugs were tested in all (78 pair-wise) combinations, and 3 were tested in a subset of combinations. Results: Multiple synergistic drug pairs emerged, with the majority comprising 2 entry inhibitors. For the pairs of entry inhibitors studied, synergy was demonstrated at the level of virus entry into host cells. Highly synergistic pairs included aripiprazole/piperacetazine, sertraline/toremifene, sertraline/bepridil, and amodiaquine/clomiphene. Conclusions: Our study shows the feasibility of identifying pairs of approved drugs that synergistically block Ebola virus infection in cell cultures. We discuss our findings in terms of the theoretic ability of these or alternate combinations to reach therapeutic levels. Future research will assess selected combinations in small-animal models of Ebola virus disease.


Assuntos
Antivirais/administração & dosagem , Ebolavirus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Chlorocebus aethiops , Aprovação de Drogas , Sinergismo Farmacológico , Quimioterapia Combinada , Células Vero , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
6.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814515

RESUMO

Real-time bioimaging of infectious disease processes may aid countermeasure development and lead to an improved understanding of pathogenesis. However, few studies have identified biomarkers for monitoring infections using in vivo imaging. Previously, we demonstrated that positron emission tomography/computed tomography (PET/CT) imaging with [18F]-fluorodeoxyglucose (FDG) can monitor monkeypox disease progression in vivo in nonhuman primates (NHPs). In this study, we investigated [18F]-FDG-PET/CT imaging of immune processes in lymphoid tissues to identify patterns of inflammation in the monkepox NHP model and to determine the value of [18F]-FDG-PET/CT as a biomarker for disease and treatment outcomes. Quantitative analysis of [18F]-FDG-PET/CT images revealed differences between moribund and surviving animals at two sites vital to the immune response to viral infections, bone marrow and lymph nodes (LNs). Moribund NHPs demonstrated increased [18F]-FDG uptake in bone marrow 4 days postinfection compared to surviving NHPs. In surviving, treated NHPs, increase in LN volume correlated with [18F]-FDG uptake and peaked 10 days postinfection, while minimal lymphadenopathy and higher glycolytic activity were observed in moribund NHPs early in infection. Imaging data were supported by standard virology, pathology, and immunology findings. Even with the limited number of subjects, imaging was able to differentiate the difference between disease outcomes, warranting additional studies to demonstrate whether [18F]-FDG-PET/CT can identify other, subtler effects. Visualizing altered metabolic activity at sites involved in the immune response by [18F]-FDG-PET/CT imaging is a powerful tool for identifying key disease-specific time points and locations that are most relevant for pathogenesis and treatment.IMPORTANCE Positron emission tomography and computed tomography (PET/CT) imaging is a universal tool in oncology and neuroscience. The application of this technology to infectious diseases is far less developed. We used PET/CT imaging with [18F]-labeled fluorodeoxyglucose ([18F]-FDG) in monkeys after monkeypox virus exposure to monitor the immune response in lymphoid tissues. In lymph nodes of surviving monkeys, changes in [18F]-FDG uptake positively correlated with enlargement of the lymph nodes and peaked on day 10 postinfection. In contrast, the bone marrow and lymph nodes of nonsurvivors showed increased [18F]-FDG uptake by day 4 postinfection with minimal lymph node enlargement, indicating that elevated cell metabolic activity early after infection is predictive of disease outcome. [18F]-FDG-PET/CT imaging can provide real-time snapshots of metabolic activity changes in response to viral infections and identify key time points and locations most relevant for monitoring the development of pathogenesis and for potential treatment to be effective.


Assuntos
Citosina/análogos & derivados , Fluordesoxiglucose F18/metabolismo , Linfadenopatia/patologia , Tecido Linfoide/patologia , Monkeypox virus/patogenicidade , Mpox/patologia , Organofosfonatos/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Antivirais/farmacologia , Medula Óssea/diagnóstico por imagem , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Cidofovir , Citosina/farmacologia , Linfadenopatia/diagnóstico por imagem , Tecido Linfoide/diagnóstico por imagem , Tecido Linfoide/efeitos dos fármacos , Macaca mulatta/virologia , Masculino , Mpox/diagnóstico por imagem , Mpox/tratamento farmacológico , Mpox/virologia , Prognóstico , Compostos Radiofarmacêuticos/metabolismo , Taxa de Sobrevida
7.
J Infect Dis ; 215(9): 1416-1420, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368541

RESUMO

Previous studies have demonstrated little efficacy of interferons (IFNs) in animal models of Ebola virus disease. However, these studies were limited to a small number of type I IFNs and, during the most recent outbreak of Ebola virus, questions regarding the suitability of the animal models to evaluate IFNs were raised. To address the potential that anti-Ebola virus activity was overlooked, type I and type II IFNs (α-2a, α-2b, -ß, -γ, and -universal) were tested in a variety of cell types (Vero E6, Huh 7 cells, and human macrophages). IFNs are weak inhibitors of Ebola virus Makona in these cell lines.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Interferon beta/farmacologia , Interferon gama/farmacologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Sinergismo Farmacológico , Humanos , Células Vero
8.
Antimicrob Agents Chemother ; 59(2): 1088-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487801

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus, and infections with this virus can result in acute respiratory syndrome with renal failure. Globally, MERS-CoV has been responsible for 877 laboratory-confirmed infections, including 317 deaths, since September 2012. As there is a paucity of information regarding the molecular pathogenesis associated with this virus or the identities of novel antiviral drug targets, we performed temporal kinome analysis on human hepatocytes infected with the Erasmus isolate of MERS-CoV with peptide kinome arrays. bioinformatics analysis of our kinome data, including pathway overrepresentation analysis (ORA) and functional network analysis, suggested that extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K)/serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signaling responses were specifically modulated in response to MERS-CoV infection in vitro throughout the course of infection. The overrepresentation of specific intermediates within these pathways determined by pathway and functional network analysis of our kinome data correlated with similar patterns of phosphorylation determined through Western blot array analysis. In addition, analysis of the effects of specific kinase inhibitors on MERS-CoV infection in tissue culture models confirmed these cellular response observations. Further, we have demonstrated that a subset of licensed kinase inhibitors targeting the ERK/MAPK and PI3K/AKT/mTOR pathways significantly inhibited MERS-CoV replication in vitro whether they were added before or after viral infection. Taken together, our data suggest that ERK/MAPK and PI3K/AKT/mTOR signaling responses play important roles in MERS-CoV infection and may represent novel drug targets for therapeutic intervention strategies.


Assuntos
Infecções por Coronavirus/metabolismo , Hepatócitos/metabolismo , Hepatócitos/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Western Blotting , Linhagem Celular , Biologia Computacional , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Fosforilação , Transdução de Sinais/fisiologia
9.
Antimicrob Agents Chemother ; 58(8): 4885-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24841273

RESUMO

Outbreaks of emerging infections present health professionals with the unique challenge of trying to select appropriate pharmacologic treatments in the clinic with little time available for drug testing and development. Typically, clinicians are left with general supportive care and often untested convalescent-phase plasma as available treatment options. Repurposing of approved pharmaceutical drugs for new indications presents an attractive alternative to clinicians, researchers, public health agencies, drug developers, and funding agencies. Given the development times and manufacturing requirements for new products, repurposing of existing drugs is likely the only solution for outbreaks due to emerging viruses. In the studies described here, a library of 290 compounds was screened for antiviral activity against Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus (SARS-CoV). Selection of compounds for inclusion in the library was dependent on current or previous FDA approval or advanced clinical development. Some drugs that had a well-defined cellular pathway as target were included. In total, 27 compounds with activity against both MERS-CoV and SARS-CoV were identified. The compounds belong to 13 different classes of pharmaceuticals, including inhibitors of estrogen receptors used for cancer treatment and inhibitors of dopamine receptor used as antipsychotics. The drugs identified in these screens provide new targets for in vivo studies as well as incorporation into ongoing clinical studies.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antipsicóticos/farmacologia , Chlorocebus aethiops , Aprovação de Drogas , Antagonistas de Estrogênios/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Concentração Inibidora 50 , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
10.
J Gen Virol ; 95(Pt 3): 571-577, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323636

RESUMO

The Middle East respiratory syndrome coronavirus (MERS-CoV) presents a novel emerging threat to public health worldwide. Several treatments for infected individuals have been suggested including IFN, ribavirin and passive immunotherapy with convalescent plasma. Administration of IFN-α2b and ribavirin has improved outcomes of MERS-CoV infection in rhesus macaques when administered within 8 h post-challenge. However, detailed and systematic evidence on the activity of other clinically available drugs is limited. Here we compared the susceptibility of MERS-CoV with different IFN products (IFN-α2b, IFN-γ, IFN-universal, IFN-α2a and IFN-ß), as well as with two antivirals, ribavirin and mycophenolic acid (MPA), against MERS-CoV (Hu/Jordan-N3/2012) in vitro. Of all the IFNs tested, IFN-ß showed the strongst inhibition of MERS-CoV in vitro, with an IC50 of 1.37 U ml(-1), 41 times lower than the previously reported IC50 (56.08 U ml(-1)) of IFN-α2b. IFN-ß inhibition was confirmed in the virus yield reduction assay, with an IC90 of 38.8 U ml(-1). Ribavirin did not inhibit viral replication in vitro at a dose that would be applicable to current treatment protocols in humans. In contrast, MPA showed strong inhibition, with an IC50 of 2.87 µM. This drug has not been previously tested against MERS-CoV and may provide an alternative to ribavirin for treatment of MERS-CoV. In conclusion, IFN-ß, MPA or a combination of the two may be beneficial in the treatment of MERS-CoV or as a post-exposure intervention in high-risk patients with known exposures to MERS-CoV.


Assuntos
Infecções por Coronaviridae/virologia , Coronaviridae/efeitos dos fármacos , Interferons/farmacologia , Ácido Micofenólico/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Coronaviridae/fisiologia , Infecções por Coronaviridae/tratamento farmacológico , Humanos , Células Vero , Replicação Viral/efeitos dos fármacos
11.
J Virol ; 85(5): 2112-25, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21147922

RESUMO

Monkeypox virus (MPXV) infection has recently expanded in geographic distribution and can be fatal in up to 10% of cases. The intravenous (i.v.) inoculation of nonhuman primates (NHPs) results in an accelerated fulminant disease course compared to that of naturally occurring MPXV infection in humans. Alternative routes of inoculation are being investigated to define an NHP model of infection that more closely resembles natural disease progression. Our goal was to determine if the intrabronchial (i.b.) exposure of NHPs to MPXV results in a systemic disease that better resembles the progression of human MPXV infection. Here, we compared the disease course following an i.v. or i.b. inoculation of NHPs with 10-fold serial doses of MPXV Zaire. Classical pox-like disease was observed in NHPs administered a high virus dose by either route. Several key events were delayed in the highest doses tested of the i.b. model compared to the timing of the i.v. model, including the onset of fever, lesion appearance, peak viremia, viral shedding in nasal and oral swabs, peak cytokine levels, and time to reach endpoint criteria. Virus distribution across 19 tissues was largely unaffected by the inoculation route at the highest doses tested. The NHPs inoculated by the i.b. route developed a viral pneumonia that likely exacerbated disease progression. Based on the observations of the delayed onset of clinical and virological parameters and endpoint criteria that may more closely resemble those of human MPXV infection, the i.b. MPXV model should be considered for the further investigation of viral pathogenesis and countermeasures.


Assuntos
Brônquios/virologia , Monkeypox virus/fisiologia , Mpox/transmissão , Mpox/virologia , Animais , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Humanos , Injeções Intravenosas , Macaca fascicularis , Mpox/imunologia , Monkeypox virus/genética , Células Vero , Eliminação de Partículas Virais
12.
J Infect Dis ; 204(12): 1902-11, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013221

RESUMO

Infection of nonhuman primates (NHPs) with monkeypox virus (MPXV) is currently being developed as an animal model of variola infection in humans. We used positron emission tomography and computed tomography (PET/CT) to identify inflammatory patterns as predictors for the outcome of MPXV disease in NHPs. Two NHPs were sublethally inoculated by the intravenous (IV) or intrabronchial (IB) routes and imaged sequentially using fluorine-18 fluorodeoxyglucose ((18)FDG) uptake as a nonspecific marker of inflammation/immune activation. Inflammation was observed in the lungs of IB-infected NHPs, and bilobular involvement was associated with morbidity. Lymphadenopathy and immune activation in the axillary lymph nodes were evident in IV- and IB-infected NHPs. Interestingly, the surviving NHPs had significant (18)FDG uptake in the axillary lymph nodes at the time of MPXV challenge with no clinical signs of illness, suggesting an association between preexisting immune activation and survival. Molecular imaging identified patterns of inflammation/immune activation that may allow risk assessment of monkeypox disease.


Assuntos
Progressão da Doença , Linfonodos/imunologia , Monkeypox virus/imunologia , Mpox/diagnóstico por imagem , Mpox/imunologia , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Axila , Brônquios/virologia , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18 , Injeções Intravenosas , Pulmão/diagnóstico por imagem , Pulmão/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Macaca fascicularis , Masculino , Mpox/complicações , Necrose/diagnóstico por imagem , Necrose/patologia , Pneumonia/diagnóstico por imagem , Pneumonia/virologia
13.
Microorganisms ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801811

RESUMO

Outbreaks of Ebola ebolavirus (EBOV) have been associated with high morbidity and mortality. Milestones have been reached recently in the management of EBOV disease (EVD) with licensure of an EBOV vaccine and two monoclonal antibody therapies. However, neither vaccines nor therapies are available for other disease-causing filoviruses. In preparation for such outbreaks, and for more facile and cost-effective management of EVD, we seek a cocktail containing orally available and room temperature stable drugs with strong activity against multiple filoviruses. We previously showed that (bepridil + sertraline) and (sertraline + toremifene) synergistically suppress EBOV in cell cultures. Here, we describe steps towards testing these combinations in a mouse model of EVD. We identified a vehicle suitable for oral delivery of the component drugs and determined that, thus formulated the drugs are equally active against EBOV as preparations in DMSO, and they maintain activity upon storage in solution for up to seven days. Pharmacokinetic (PK) studies indicated that the drugs in the oral delivery vehicle are well tolerated in mice at the highest doses tested. Collectively the data support advancement of these combinations to tests for synergy in a mouse model of EVD. Moreover, mathematical modeling based on human oral PK projects that the combinations would be more active in humans than their component single drugs.

15.
Antiviral Res ; 182: 104908, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798602

RESUMO

We have recently identified three molecules (tilorone, quinacrine and pyronaridine tetraphosphate) which all demonstrated efficacy in the mouse model of infection with mouse-adapted Ebola virus (EBOV) model of disease and had similar in vitro inhibition of an Ebola pseudovirus (VSV-EBOV-GP), suggesting they interfere with viral entry. Using a machine learning model to predict lysosomotropism these compounds were evaluated for their ability to possess a lysosomotropic mechanism in vitro. We now demonstrate in vitro that pyronaridine tetraphosphate is an inhibitor of Lysotracker accumulation in lysosomes (IC50 = 0.56 µM). Further, we evaluated antiviral synergy between pyronaridine and artesunate (Pyramax®), which are used in combination to treat malaria. Artesunate was not found to have lysosomotropic activity in vitro and the combination effect on EBOV inhibition was shown to be additive. Pyramax® may represent a unique example of the repurposing of a combination product for another disease.


Assuntos
Antivirais/farmacologia , Artesunato/uso terapêutico , Reposicionamento de Medicamentos , Ebolavirus/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Naftiridinas/uso terapêutico , Quinacrina/uso terapêutico , Tilorona/uso terapêutico , Antivirais/uso terapêutico , Combinação de Medicamentos , Sinergismo Farmacológico , Células HeLa , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Células MCF-7 , Aprendizado de Máquina , Internalização do Vírus/efeitos dos fármacos
16.
Antiviral Res ; 181: 104863, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32682926

RESUMO

The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC50 range of 0.82-1.30 µM against three strains of EBOV and IC50 range of 1.01-2.72 µM against two strains of Marburg virus (MARV)) which is an approved drug in the European Union and used in combination with artesunate. To date, no small molecule drugs have shown statistically significant efficacy in the guinea pig model of EBOV infection. Pharmacokinetics and range-finding studies in guinea pigs directed us to a single 300 mg/kg or 600 mg/kg oral dose of pyronaridine 1hr after infection. Pyronaridine resulted in statistically significant survival of 40% at 300 mg/kg and protected from a lethal challenge with EBOV. In comparison, oral favipiravir (300 mg/kg dosed once a day) had 43.5% survival. All animals in the vehicle treatment group succumbed to disease by study day 12 (100% mortality). The in vitro metabolism and metabolite identification of pyronaridine and another of our EBOV active molecules, tilorone, suggested significant species differences which may account for the efficacy or lack thereof, respectively in guinea pig. In summary, our studies with pyronaridine demonstrates its utility for repurposing as an antiviral against EBOV and MARV.


Assuntos
Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Naftiridinas/uso terapêutico , Animais , Antivirais/farmacocinética , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Ebolavirus/efeitos dos fármacos , Feminino , Cobaias , Humanos , Concentração Inibidora 50 , Masculino , Marburgvirus/efeitos dos fármacos , Camundongos , Microssomos , Naftiridinas/farmacocinética
17.
Viruses ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396288

RESUMO

Filoviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities. Although there is progress in medical countermeasure (MCM) development (in particular, vaccines and antibody-based therapeutics), the need for efficacious small-molecule therapeutics remains unmet. Here we describe a novel high-throughput screening assay to identify inhibitors of Ebola virus VP40 matrix protein association with viral particle assembly sites on the interior of the host cell plasma membrane. Using this assay, we screened nearly 3000 small molecules and identified several molecules with the desired inhibitory properties. In secondary assays, one identified compound, sangivamycin, inhibited not only Ebola viral infectivity but also that of other viruses. This finding indicates that it is possible for this new VP40-based screening method to identify highly potent MCMs against Ebola virus and its relatives.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Nucleoproteínas/antagonistas & inibidores , Proteínas do Core Viral/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/uso terapêutico , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ebolavirus/genética , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Contramedidas Médicas , Estrutura Molecular , Nucleoproteínas/química , Nucleosídeos de Pirimidina/farmacologia , Células Vero , Proteínas do Core Viral/química , Liberação de Vírus/efeitos dos fármacos
18.
Sci Rep ; 9(1): 20199, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882748

RESUMO

During the Ebola virus disease (EVD) epidemic in Western Africa (2013‒2016), antimalarial treatment was administered to EVD patients due to the high coexisting malaria burden in accordance with World Health Organization guidelines. In an Ebola treatment center in Liberia, EVD patients receiving the combination antimalarial artesunate-amodiaquine had a lower risk of death compared to those treated with artemether-lumefantrine. As artemether and artesunate are derivatives of artemisinin, the beneficial anti-Ebola virus (EBOV) effect observed could possibly be attributed to the change from lumefantrine to amodiaquine. Amodiaquine is a widely used antimalarial in the countries that experience outbreaks of EVD and, therefore, holds promise as an approved drug that could be repurposed for treating EBOV infections. We investigated the potential anti-EBOV effect of amodiaquine in a well-characterized nonhuman primate model of EVD. Using a similar 3-day antimalarial dosing strategy as for human patients, plasma concentrations of amodiaquine in healthy animals were similar to those found in humans. However, the treatment regimen did not result in a survival benefit or decrease of disease signs in EBOV-infected animals. While amodiaquine on its own failed to demonstrate efficacy, we cannot exclude potential therapeutic value of amodiaquine when used in combination with artesunate or another antiviral.


Assuntos
Amodiaquina/uso terapêutico , Antivirais/uso terapêutico , Artemisininas/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Macaca mulatta , Masculino
19.
PLoS Negl Trop Dis ; 13(7): e0007595, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356611

RESUMO

Ebolaviruses cause an often rapidly fatal syndrome known as Ebola virus disease (EVD), with average case fatality rates of ~50%. There is no licensed vaccine or treatment for EVD, underscoring the urgent need to develop new anti-ebolavirus agents, especially in the face of an ongoing outbreak in the Democratic Republic of the Congo and the largest ever outbreak in Western Africa in 2013-2016. Lectins have been investigated as potential antiviral agents as they bind glycans present on viral surface glycoproteins, but clinical use of them has been slowed by concerns regarding their mitogenicity, i.e. ability to cause immune cell proliferation. We previously engineered a banana lectin (BanLec), a carbohydrate-binding protein, such that it retained antiviral activity but lost mitogenicity by mutating a single amino acid, yielding H84T BanLec (H84T). H84T shows activity against viruses containing high-mannose N-glycans, including influenza A and B, HIV-1 and -2, and hepatitis C virus. Since ebolavirus surface glycoproteins also contain many high-mannose N-glycans, we assessed whether H84T could inhibit ebolavirus replication. H84T inhibited Ebola virus (EBOV) replication in cell cultures. In cells, H84T inhibited both virus-like particle (VLP) entry and transcription/replication of the EBOV mini-genome at high micromolar concentrations, while inhibiting infection by transcription- and replication-competent VLPs, which measures the full viral life cycle, in the low micromolar range. H84T did not inhibit assembly, budding, or release of VLPs. These findings suggest that H84T may exert its anti-ebolavirus effect(s) by blocking both entry and transcription/replication. In a mouse model, H84T partially (maximally, ~50-80%) protected mice from an otherwise lethal mouse-adapted EBOV infection. Interestingly, a single dose of H84T pre-exposure to EBOV protected ~80% of mice. Thus, H84T shows promise as a new anti-ebolavirus agent with potential to be used in combination with vaccination or other agents in a prophylactic or therapeutic regimen.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Musa/química , Lectinas de Plantas/farmacologia , Animais , Antivirais/síntese química , Linhagem Celular Tumoral , Ebolavirus/genética , Ebolavirus/imunologia , Escherichia coli , Feminino , Engenharia Genética , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Lectinas de Plantas/síntese química , Replicação Viral/efeitos dos fármacos
20.
PLoS One ; 13(3): e0194868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566060

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) presents an emerging threat to public health worldwide by causing severe respiratory disease in humans with high virulence and case fatality rate (about 35%) since 2012. Little is known about the pathogenesis and innate antiviral response in primary human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs) upon MERS-CoV infection. In this study, we assessed MERS-CoV replication as well as induction of inflammatory cytokines and chemokines in MDMs and immature and mature MDDCs. Immature MDDCs and MDMs were permissive for MERS-CoV infection, while mature MDDCs were not, with stimulation of proinflammatory cytokine and chemokine upregulation in MDMs, but not in MDDCs. To further evaluate the antiviral activity of well-defined drugs in primary antigen presenting cells (APCs), three compounds (chloroquine, chlorpromazine and toremifine), each with broad-spectrum antiviral activity in immortalized cell lines, were evaluated in MDMs and MDDCs to determine their antiviral effect on MERS-CoV infection. While chloroquine was not active in these primary cells, chlorpromazine showed strong anti-MERS-CoV activity, but it was associated with high cytotoxicity narrowing the potential window for drug utilization. Unlike in established cells, toremifene had marginal activity when tested in antigen presenting cells, with high apparent cytotoxicity, also limiting its potential as a therapeutic option. These results demonstrate the value of testing drugs in primary cells, in addition to established cell lines, before initiating preclinical or clinical studies for MERS treatment and the importance of carefully assessing cytotoxicity in drug screen assays. Furthermore, these studies also highlight the role of APCs in stimulating a robust protective immune response to MERS-CoV infection.


Assuntos
Células Apresentadoras de Antígenos/efeitos dos fármacos , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Células Apresentadoras de Antígenos/fisiologia , Células Cultivadas , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Aprovação de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Macrófagos/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Monócitos/fisiologia , Resultado do Tratamento , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA