Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Nature ; 628(8007): 299-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438066

RESUMO

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

2.
Nature ; 628(8009): 765-770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658685

RESUMO

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

3.
Nature ; 620(7973): 323-327, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37344595

RESUMO

The black phase of formamidinium lead iodide (FAPbI3) perovskite shows huge promise as an efficient photovoltaic, but it is not favoured energetically at room temperature, meaning that the undesirable yellow phases are always present alongside it during crystallization1-4. This problem has made it difficult to formulate the fast crystallization process of perovskite and develop guidelines governing the formation of black-phase FAPbI3 (refs. 5,6). Here we use in situ monitoring of the perovskite crystallization process to report an oriented nucleation mechanism that can help to avoid the presence of undesirable phases and improve the performance of photovoltaic devices in different film-processing scenarios. The resulting device has a demonstrated power-conversion efficiency of 25.4% (certified 25.0%) and the module, which has an area of 27.83 cm2, has achieved an impressive certified aperture efficiency of 21.4%.

5.
Proc Natl Acad Sci U S A ; 119(21): e2122425119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35588450

RESUMO

Aryl chlorides are among the most versatile synthetic precursors, and yet inexpensive and benign chlorination techniques to produce them are underdeveloped. We propose a process to generate aryl chlorides by chloro-group transfer from chlorophenol pollutants to arenes during their mineralization, catalyzed by Cu(NO3)2/NaNO3 under aerobic conditions. A wide range of arene substrates have been chlorinated using this process. Mechanistic studies show that the Cu catalyst acts in cooperation with NOx species generated from the decomposition of NaNO3 to regulate the formation of chlorine radicals that mediate the chlorination of arenes together with the mineralization of chlorophenol. The selective formation of aryl chlorides with the concomitant degradation of toxic chlorophenol pollutants represents a new approach in environmental pollutant detoxication. A reduction in the use of traditional chlorination reagents provides another (indirect) benefit of this procedure.


Assuntos
Cloretos , Clorofenóis , Poluentes Ambientais , Poluentes Químicos da Água , Catálise , Cloretos/síntese química , Clorofenóis/química , Clorofenóis/toxicidade , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Halogenação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
6.
Small ; 20(21): e2309830, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38174610

RESUMO

Iron/iron phosphide nanospheres supported on ginkgo leaf-derived carbon (Fe&FeP@gl-C) are prepared using a post-phosphidation approach, with varying amounts of iron (Fe). The activity of the catalysts in the hydrogen evolution reaction (HER) outperforms iron/iron carbide nanospheres supported on ginkgo leaf-derived carbon (Fe&FexC@gl-C), due to enhanced work function, electron transfer, and Volmer processes. The d-band centers of Fe&FeP@gl-C-15 move away from the Fermi level, lowering the H2 desorption energy and accelerating the Heyrovsky reaction. Density functional theory (DFT) calculations reveal that the hydrogen-binding free energy |ΔGH*| value is close to zero for the Fe&FeP@gl-C-15 catalyst, showing a good balance between Volmer and Heyrovsky processes. The Fe&FeP@gl-C-15 catalyst shows excellent hydrogen evolution performance in 0.5 m H2SO4, driving a current density of 10 mA cm-2 at an overpotential of 92 mV. Notably, the Fe&FeP@gl-C-15 catalyst outperforms a 20 wt% Pt/C catalyst, with a smaller overpotential required to drive a higher current density above 375 mA cm-2.

7.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38634659

RESUMO

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Assuntos
Antineoplásicos , Complexos de Coordenação , Curcumina , Ensaios de Seleção de Medicamentos Antitumorais , Rutênio , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Diarileptanoides/química , Diarileptanoides/farmacologia , Diarileptanoides/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Modelos Moleculares , Teoria da Densidade Funcional , Sobrevivência Celular/efeitos dos fármacos , Células HEK293
8.
Nucleic Acids Res ; 50(12): 7084-7096, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699212

RESUMO

We report the discovery and functional characterization of a new bacterial tRNA species. The tRNA-Asp-AUC, from a fast-growing desert streptomycete, decodes GAU codons. In the absence of queuosine tRNA anticodon modification in streptomycetes, the new tRNA circumvents inefficient wobble base-pairing during translation. The tRNA, which is constitutively expressed, greatly enhances synthesis of 4 different antibiotics in the model mesophilic species Streptomyces coelicolor, including the product of a so-called cryptic pathway, and increases yields of medically-important antibiotics in other species. This can be rationalised due to increased expression of both pleiotropic and pathway-specific transcriptional activators of antibiotic biosynthesis whose genes generally possess one or more GAT codons; the frequency of this codon in these gene sets is significantly higher than the average for streptomycete genes. In addition, the tRNA enhances production of cobalamin, a precursor of S-adenosyl methionine, itself an essential cofactor for synthesis of many antibiotics. The results establish a new paradigm of inefficient wobble base-pairing involving GAU codons as an evolved strategy to regulate gene expression and, in particular, antibiotic biosynthesis. Circumventing this by expression of the new cognate tRNA offers a generic strategy to increase antibiotic yields and to expand the repertoire of much-needed new bioactive metabolites produced by these valuable bacteria.


Assuntos
Streptomyces , Streptomyces/genética , Antibacterianos , RNA de Transferência/genética
9.
Angew Chem Int Ed Engl ; : e202407193, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744679

RESUMO

As a leading contender to replace lead halide perovskites, tin-based perovskites have demonstrated ever increasing performance in solar cells and light-emitting diodes (LEDs). They tend to be processed with dimethyl sulfoxide (DMSO) solvent, which has been identified as a major contributor to the Sn(II) oxidation during film fabrication, posing a challenge to the further improvement of Sn-based perovskites. Herein, we use NMR spectroscopy to investigate the kinetics of the oxidation of SnI2, revealing that autoamplification takes place, accelerating the oxidation as the reaction progresses. We propose a mechanism consistent with these observations involving water participation and HI generation. Building upon these insights, we have developed low-temperature Sn-based perovskite LEDs (PeLEDs) processed at 60 °C, achieving enhanced external quantum efficiencies (EQEs). Our research underscores the substantial potential of low-temperature DMSO solvent processes and DMSO-free solvent systems for fabricating oxidation-free Sn-based perovskites, shaping the future direction in processing Sn-containing perovskite materials and optoelectronic devices.

10.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437457

RESUMO

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

11.
Cancer Sci ; 114(9): 3728-3739, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37340597

RESUMO

Retinoblastoma is the most common pediatric eye cancer. It is currently treated with a limited number of drugs, adapted from other pediatric cancer treatments. Drug toxicity and relapse of the disease warrant new therapeutic strategies for these young patients. In this study, we developed a robust tumoroid-based platform to test chemotherapeutic agents in combination with focal therapy (thermotherapy) - a treatment option widely used in clinical practice - in accordance with clinically relevant trial protocols. The model consists of matrix-embedded tumoroids that retain retinoblastoma features and respond to repeated chemotherapeutic drug exposure similarly to advanced clinical cases. Moreover, the screening platform includes a diode laser (810 nm, 0.3 W) to selectively heat the tumoroids, combined with an on-line system to monitor the intratumoral and surrounding temperatures. This allows the reproduction of the clinical settings of thermotherapy and combined chemothermotherapy treatments. When testing the two main drugs currently used in clinics to treat retinoblastoma in our model, we observed results similar to those clinically obtained, validating the utility of the model. This screening platform is the first system to accurately reproduce clinically relevant treatment methods and should lead to the identification of more efficient drugs to treat retinoblastoma.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Combinada , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias da Retina/tratamento farmacológico , Retinoblastoma/tratamento farmacológico
12.
Small ; 19(41): e2206999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317016

RESUMO

Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2  S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.

13.
Small ; 19(38): e2302021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37222112

RESUMO

Wide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (VOC ) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces VOC loss, and improves device stability. As a result, 1.68 eV wide-bandgap devices with an inverted structure deliver a VOC of 1.20 V with an efficiency of 20.38%. The unencapsulated GCDC-treated devices are considerably more stable than the control devices, retaining 92% of their initial efficiency after 1392 h storage under ambient conditions and retaining 93% after heating at 65 °C for 1128 h in an N2 atmosphere. This strategy of mitigating ion migration via anchoring a nonconductive layer provides a simple approach to achieving efficient and stable wide-bandgap PSCs.

14.
Exp Eye Res ; 230: 109447, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36940901

RESUMO

Retinoblastoma is a rare childhood cancer of the eye. Of the small number of drugs are used to treat retinoblastoma, all have been repurposed from drugs developed for other conditions. In order to find drugs or drug combinations better suited to the improved treatment of retinoblastoma, reliable predictive models are required, which facilitate the challenging transition from in vitro studies to clinical trials. In this review, the research performed to date on the development of 2D and 3D in vitro models for retinoblastoma is presented. Most of this research was undertaken with a view to better biological understanding of retinoblastoma, and we discuss the potential for these models to be applied to drug screening. Future research directions for streamlined drug discovery are considered and evaluated, and many promising avenues identified.


Assuntos
Neoplasias da Retina , Retinoblastoma , Humanos , Criança , Retinoblastoma/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Neoplasias da Retina/tratamento farmacológico
15.
Angew Chem Int Ed Engl ; 62(29): e202304350, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37184396

RESUMO

Hole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (spiro-OMeTAD, termed "Spiro") is the most successful HTM used in PSCs, but its versatility is imperfect. To improve its performance, we developed a novel spiro-type HTM (termed "DP") by substituting four anisole units on Spiro with 4-methoxybiphenyl moieties. By extending the π-conjugation of Spiro in this way, the HOMO level of the HTM matches well with the perovskite valence band, enhancing hole mobility and increasing the glass transition temperature. DP-based PSC achieves high power conversion efficiencies (PCEs) of 25.24 % for small-area (0.06 cm2 ) devices and 21.86 % for modules (designated area of 27.56 cm2 ), along with the certified efficiency of 21.78 % on a designated area of 27.86 cm2 . The encapsulated DP-based devices maintain 95.1 % of the initial performance under ISOS-L-1 conditions after 2560 hours and 87 % at the ISOS-L-3 conditions over 600 hours.

16.
J Biol Inorg Chem ; 27(2): 239-248, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064831

RESUMO

Although genomic DNA is the primary target of anticancer platinum-based drugs, interactions with proteins also play a significant role in their overall activity. In this study, competitive binding of cisplatin with an oligonucleotide and two peptides corresponding to segments of H2A and H2B histone proteins was investigated by mass spectrometry. Following the determination of the cisplatin binding sites on the oligonucleotide and peptides by tandem mass spectrometry, competitive binding was studied and transfer of platinum fragments from the platinated peptides to the oligonucleotide explored. In conjunction with previous studies on the nucleosome, the results suggest that all four of the abundant histone proteins serve as a platinum drug reservoir in the cell nucleus, providing an adduct pool that can be ultimately transferred to the DNA.


Assuntos
Cisplatino , Histonas , Cisplatino/química , DNA/química , Histonas/química , Histonas/metabolismo , Espectrometria de Massas , Oligonucleotídeos , Peptídeos/metabolismo , Platina/metabolismo
17.
Arch Microbiol ; 204(9): 588, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048304

RESUMO

Pseudarthrobacter sulfonivorans strain Ar51 can degrade crude oil and multi-substituted benzene compounds efficiently at low temperatures. However, it cannot degrade hydroquinone, which is a key intermediate in the degradation of several other compounds of environmental importance, such as 4-nitrophenol, g-hexachlorocyclohexane, 4-hydroxyacetophenone and 4-aminophenol. Here we co-expressed the two subunits of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3 with different promoters in the strain Ar51. The strain with 2 hdnO promoters exhibited the strongest hydroquinone catabolic activity. However, in the absence of antibiotic selection this ability to degrade hydroquinone was lost due to plasmid instability. Consequently, we constructed a hisD knockout strain, which was unable to synthesise histidine. By introducing the hisD gene onto the plasmid, the ability to degrade hydroquinone in the absence of antibiotic selection was stabilised. In addition, to make the strain more stable for industrial applications, we knocked out the recA gene and integrated the hydroquinone dioxygenase genes at this chromosomal locus. This strain exhibited the strongest activity in catabolizing hydroquinone, up to 470 mg/L in 16 h without antibiotic selection. In addition, this activity was shown to be stable when the strain has cultured in medium without antibiotic selection after 20 passages.


Assuntos
Dioxigenases , Sphingomonas , Antibacterianos/metabolismo , Biodegradação Ambiental , Dioxigenases/genética , Dioxigenases/metabolismo , Hidroquinonas/metabolismo , Micrococcaceae , Sphingomonas/genética , Sphingomonas/metabolismo
18.
Inorg Chem ; 61(12): 5010-5016, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35290056

RESUMO

Passivation of perovskite films by ionic liquids (ILs) improves the performance (efficiency and stability) of perovskite solar cells (PSCs). However, the role of ILs in the passivation of perovskite films is not fully understood. Here, we report the reactions of commonly used ILs with the components of perovskites. The reaction of ILs with perovskite precursors (PbI2 and methylammonium iodide or formamidinium iodide) in a 1:1:1 molar ratio affords one-dimensional (1D) salts composed of the IL cation interspersed along infinite 1D polymeric [PbI3]-n chains. If the IL is applied in excess, the resulting crystal is composed of six cations surrounding a discrete [Pb3I12]6- cluster. All the isolated salts were unambiguously characterized by single-crystal X-ray diffraction analysis, which also reveals extensive hydrogen-bonding interactions.

19.
J Enzyme Inhib Med Chem ; 37(1): 1527-1536, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635138

RESUMO

A novel automated method based on sequential injection analysis (SIA), a non-segmented flow injection technique, was developed to evaluate glutathione S-transferase P1-1 (GST P1-1) activity in the presence of organometallic complexes with putative anticancer activity. The assay is based on the reaction of L-glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) in the presence of GST P1-1 to afford the GS-DNB conjugate and the reaction may be monitored by an increase in absorbance at 340 nm. A series of ruthenium, iron, osmium and iridium complexes were evaluated as GST P1-1 inhibitors by evaluating their half-maximal inhibitory concentration (IC50). An iridium compound displays the lowest IC50 value of 6.7 ± 0.7 µM and an iron compound displays the highest IC50 value of 275 ± 9 µM. The SIA method is simple to use, robust, reliable, and efficient and uses fewer reagents than batch methods and each analysis takes only 5 minutes.


Assuntos
Glutationa Transferase , Compostos Organometálicos , Glutationa , Glutationa S-Transferase pi , Irídio , Compostos Organometálicos/farmacologia
20.
Proc Natl Acad Sci U S A ; 116(28): 13943-13951, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221747

RESUMO

Cisplatin [cis-diamminedichloroplatinum(II) (cis-DDP)] is one of the most successful anticancer agents effective against a wide range of solid tumors. However, its use is restricted by side effects and/or by intrinsic or acquired drug resistance. Here, we probed the role of glutathione transferase (GST) P1-1, an antiapoptotic protein often overexpressed in drug-resistant tumors, as a cis-DDP-binding protein. Our results show that cis-DDP is not a substrate for the glutathione (GSH) transferase activity of GST P1-1. Instead, GST P1-1 sequesters and inactivates cisplatin with the aid of 2 solvent-accessible cysteines, resulting in protein subunits cross-linking, while maintaining its GSH-conjugation activity. Furthermore, it is well known that GST P1-1 binding to the c-Jun N-terminal kinase (JNK) inhibits JNK phosphorylation, which is required for downstream apoptosis signaling. Thus, in turn, GST P1-1 overexpression and Pt-induced subunit cross-linking could modulate JNK apoptotic signaling, further confirming the role of GST P1-1 as an antiapoptotic protein.


Assuntos
Cisplatino/química , Glutationa S-Transferase pi/química , Proteínas Quinases JNK Ativadas por Mitógeno/química , Neoplasias/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutationa/química , Glutationa S-Transferase pi/genética , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Neoplasias/genética , Fosforilação , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA