Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 14(2)2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24311969

RESUMO

While adult heart muscle is the least regenerative of tissues, embryonic cardiomyocytes are proliferative, with embryonic stem (ES) cells providing an endless reservoir. In addition to secreted factors and cell-cell interactions, the extracellular microenvironment has been shown to play an important role in stem cell lineage specification, and understanding how scaffold elasticity influences cardiac differentiation is crucial to cardiac tissue engineering. Though previous studies have analyzed the role of the matrix elasticity on the function of differentiated cardiomyocytes, whether it affects the induction of cardiomyocytes from pluripotent stem cells is poorly understood. Here, we examined the role of matrix rigidity on the cardiac differentiation using mouse and human ES cells. Culture on polydimethylsiloxane (PDMS) substrates of varied monomer-to-crosslinker ratios revealed that rigid extracellular matrices promote a higher yield of de novo cardiomyocytes from undifferentiated ES cells. Using an genetically modified ES system that allows us to purify differentiated cardiomyocytes by drug selection, we demonstrate that rigid environments induce higher cardiac troponin T expression, beating rate of foci, and expression ratio of adult α- to fetal ß- myosin heavy chain in a purified cardiac population. M-mode and mechanical interferometry image analyses demonstrate that these ES-derived cardiomyocytes display functional maturity and synchronization of beating when co-cultured with neonatal cardiomyocytes harvested from a developing embryo. Together, these data identify matrix stiffness as an independent factor that instructs not only the maturation of the already differentiated cardiomyocytes but also the induction and proliferation of cardiomyocytes from undifferentiated progenitors. Manipulation of the stiffness will help direct the production of functional cardiomyocytes en masse from stem cells for regenerative medicine purposes.

2.
Faraday Discuss ; 137: 319-33; discussion 403-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18214111

RESUMO

We discuss how actively-driven optical tweezers may be used to characterize Brownian microparticles. Two experiments are described in detail. We follow the thermal fluctuations of a charged particle in an oscillatory electric field and demonstrate that charges as low as a few elementary charges can be measured accurately and reproducibly. Secondly, we measure the orientational dynamics of a trapped rotating droplet and use circular polarimetry within optical tweezers to determine in situ birefringence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA