Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 125(17): 171301, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33156637

RESUMO

Axion dark matter (DM) may convert to radio-frequency electromagnetic radiation in the strong magnetic fields around neutron stars. The radio signature of such a process would be an ultranarrow spectral peak at a frequency determined by the mass of the axion particle. We analyze data we collected from the Robert C. Byrd Green Bank Telescope in the L band and the Effelsberg 100-m Telescope in the L band and S band from a number of sources expected to produce bright signals of axion-photon conversion, including the Galactic center of the Milky Way and the nearby isolated neutron stars RX J0720.4-3125 and RX J0806.4-4123. We find no evidence for axion DM and are able to set constraints on the existence of axion DM in the highly motivated mass range between ∼5 and 11 µeV with the strongest constraints to date on axions in the ∼10-11 µeV range.

2.
Phys Rev Lett ; 125(14): 141104, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064506

RESUMO

The 2017 Event Horizon Telescope (EHT) observations of the central source in M87 have led to the first measurement of the size of a black-hole shadow. This observation offers a new and clean gravitational test of the black-hole metric in the strong-field regime. We show analytically that spacetimes that deviate from the Kerr metric but satisfy weak-field tests can lead to large deviations in the predicted black-hole shadows that are inconsistent with even the current EHT measurements. We use numerical calculations of regular, parametric, non-Kerr metrics to identify the common characteristic among these different parametrizations that control the predicted shadow size. We show that the shadow-size measurements place significant constraints on deviation parameters that control the second post-Newtonian and higher orders of each metric and are, therefore, inaccessible to weak-field tests. The new constraints are complementary to those imposed by observations of gravitational waves from stellar-mass sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA