Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 160(6): 875-85, 2003 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-12629051

RESUMO

Granzyme B (GrB), acting similar to an apical caspase, efficiently activates a proteolytic cascade after intracellular delivery by perforin. Studies here were designed to learn whether the physiologic effector, GrB-serglycin, initiates apoptosis primarily through caspase-3 or through BH3-only proteins with subsequent mitochondrial permeabilization and apoptosis. Using four separate cell lines that were either genetically lacking the zymogen or rendered deficient in active caspase-3, we measured apoptotic indices within whole cells (active caspase-3, mitochondrial depolarization [DeltaPsim] and TUNEL). Adhering to these conditions, the following were observed in targets after GrB delivery: (a) procaspase-3-deficient cells fail to display a reduced DeltaPsim and DNA fragmentation; (b) Bax/Bak is required for optimal DeltaPsim reduction, caspase-3 activation, and DNA fragmentation, whereas BID cleavage is undetected by immunoblot; (c) Bcl-2 inhibits GrB-mediated apoptosis (reduced DeltaPsim and TUNEL reactivity) by blocking oligomerization of caspase-3; and (d) in procaspase-3-deficient cells a mitochondrial-independent pathway was identified which involved procaspase-7 activation, PARP cleavage, and nuclear condensation. The data therefore support the existence of a fully implemented apoptotic pathway initiated by GrB, propagated by caspase-3, and perpetuated by a mitochondrial amplification loop but also emphasize the presence of an ancillary caspase-dependent, mitochondria-independent pathway.


Assuntos
Apoptose/fisiologia , Caspases/deficiência , Precursores Enzimáticos/deficiência , Mitocôndrias/enzimologia , Serina Endopeptidases/deficiência , Linfócitos T Citotóxicos/enzimologia , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 3 , Caspase 7 , Caspases/genética , Caspases/metabolismo , Fragmentação do DNA/fisiologia , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Fibroblastos , Granzimas , Humanos , Células Jurkat , Potenciais da Membrana/fisiologia , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina Endopeptidases/genética , Transdução de Sinais/fisiologia , Linfócitos T Citotóxicos/citologia , Proteína X Associada a bcl-2
2.
Mol Cell Biol ; 25(23): 10507-15, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16287862

RESUMO

Transcribed inverted repeats are potent triggers for RNA interference and RNA-directed DNA methylation in plants through the production of double-stranded RNA (dsRNA). For example, a transcribed inverted repeat of endogenous genes in Arabidopsis thaliana, PAI1-PAI4, guides methylation of itself as well as two unlinked duplicated PAI genes, PAI2 and PAI3. In previous work, we found that mutations in the SUVH4/KYP histone H3 lysine 9 (H3 K9) methyltransferase cause a loss of DNA methylation on PAI2 and PAI3, but not on the inverted repeat. Here we use chromatin immunoprecipitation analysis to show that the transcribed inverted repeat carries H3 K9 methylation, which is maintained even in an suvh4 mutant. PAI1-PAI4 H3 K9 methylation and DNA methylation are also maintained in an suvh6 mutant, which is defective for a gene closely related to SUVH4. However, both epigenetic modifications are reduced at this locus in an suvh4 suvh6 double mutant. In contrast, SUVH6 does not play a significant role in maintenance of H3 K9 or DNA methylation on PAI2, transposon sequences, or centromere repeat sequences. Thus, SUVH6 is preferentially active at a dsRNA source locus versus targets for RNA-directed chromatin modifications.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Lisina/genética , Metilação , Metiltransferases/genética , Mutação/genética , Plantas Geneticamente Modificadas , Sequências Repetitivas de Ácido Nucleico/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica/genética
3.
Genetics ; 174(3): 1161-71, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16951055

RESUMO

S-adenosylhomocysteine hydrolase (SAH) is a key enzyme in the maintenance of methylation homeostasis in eukaryotes because it is needed to metabolize the by-product of transmethylation reactions, S-adenosylhomocysteine (AdoHcy), which causes by-product inhibition of methyltransferases (MTase's). Complete loss of SAH function is lethal. Partial loss of SAH function causes pleiotropic effects including developmental abnormalities and reduced cytosine methylation. Here we describe a novel partial-function missense allele of the Arabidopsis SAH1 gene that causes loss of cytosine methylation specifically in non-CG contexts controlled by the CMT3 DNA MTase and transcriptional reactivation of a silenced reporter gene, without conferring developmental abnormalities. The CMT3 pathway depends on histone H3 lysine 9 methylation (H3 mK9) to guide DNA methylation. Our results suggest that this pathway is uniquely sensitive to SAH impairment because of its requirement for two transmethylation reactions that can both be inhibited by AdoHcy. Our results further suggest that gene silencing pathways involving an interplay between histone and DNA methylation in other eukaryotes can be selectively impaired by controlled SAH downregulation.


Assuntos
Adenosil-Homocisteinase/deficiência , Metilação de DNA , Adenosil-Homocisteinase/química , Adenosil-Homocisteinase/genética , Alelos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , DNA de Plantas/metabolismo , DNA-Citosina Metilases/antagonistas & inibidores , DNA-Citosina Metilases/genética , Inativação Gênica , Genes de Plantas , Genes Reporter , Teste de Complementação Genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas Metiltransferases , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosil-Homocisteína/metabolismo , Homologia de Sequência de Aminoácidos , Ativação Transcricional
4.
Pflugers Arch ; 454(5): 735-47, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17473934

RESUMO

Taste is an essential sense for detection of nutrient-rich food and avoidance of toxic substances. The Drosophila melanogaster gustatory system provides an excellent model to study taste perception and taste-elicited behaviors. "The fly" is unique in the animal kingdom with regard to available experimental tools, which include a wide repertoire of molecular-genetic analyses (i.e., efficient production of transgenics and gene knockouts), elegant behavioral assays, and the possibility to conduct electrophysiological investigations. In addition, fruit flies, like humans, recognize sugars as a food source, but avoid bitter tasting substances that are often toxic to insects and mammals alike. This paper will present recent research progress in the field of taste and contact pheromone perception in the fruit fly. First, we shall describe the anatomical properties of the Drosophila gustatory system and survey the family of taste receptors to provide an appropriate background. We shall then review taste and pheromone perception mainly from a molecular genetic perspective that includes behavioral, electrophysiological and imaging analyses of wild type flies and flies with genetically manipulated taste cells. Finally, we shall provide an outlook of taste research in this elegant model system for the next few years.


Assuntos
Drosophila melanogaster/fisiologia , Percepção/fisiologia , Feromônios/farmacologia , Paladar/fisiologia , Animais , Comportamento Animal/fisiologia , Células Quimiorreceptoras/citologia , Células Quimiorreceptoras/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Humanos , Masculino , Feromônios/genética , Órgãos dos Sentidos/anatomia & histologia , Órgãos dos Sentidos/efeitos dos fármacos , Transdução de Sinais , Olfato/fisiologia , Paladar/genética
5.
Plant Cell ; 18(5): 1166-76, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16582009

RESUMO

In Arabidopsis thaliana, heterochromatin formation is guided by double-stranded RNA (dsRNA), which triggers methylation of histone H3 at Lys-9 (H3 mK9) and CG plus non-CG methylation on identical DNA sequences. At heterochromatin targets including transposons and centromere repeats, H3 mK9 mediated by the Su(var)3-9 homologue 4 (SUVH4)/KYP histone methyltransferase (MTase) is required for the maintenance of non-CG methylation by the CMT3 DNA MTase. Here, we show that although SUVH4 is the major H3 K9 MTase, the SUVH5 protein also has histone MTase activity in vitro and contributes to the maintenance of H3 mK9 and CMT3-mediated non-CG methylation in vivo. Strikingly, the relative contributions of SUVH4, SUVH5, and a third related histone MTase, SUVH6, to non-CG methylation are locus-specific. For example, SUVH4 and SUVH5 together control transposon sequences with only a minor contribution from SUVH6, whereas SUVH4 and SUVH6 together control a transcribed inverted repeat source of dsRNA with only a minor contribution from SUVH5. This locus-specific variation suggests different mechanisms for recruiting or activating SUVH enzymes at different heterochromatic sequences. The suvh4 suvh5 suvh6 triple mutant loses both monomethyl and dimethyl H3 K9 at target loci. The suvh4 suvh5 suvh6 mutant also displays a loss of non-CG methylation similar to a cmt3 mutant, indicating that SUVH4, SUVH5, and SUVH6 together control CMT3 activity.


Assuntos
Arabidopsis/enzimologia , Metilação de DNA , Histona-Lisina N-Metiltransferase/fisiologia , Metiltransferases/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Elementos de DNA Transponíveis/fisiologia , DNA-Citosina Metilases/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Metiltransferases/genética , Proteínas Metiltransferases , RNA de Cadeia Dupla/metabolismo , Sequências Repetitivas de Ácido Nucleico , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA