Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 139(3): 547-59, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19879841

RESUMO

The exosome is a conserved macromolecular complex essential for RNA degradation. The nine-subunit core of the eukaryotic exosome shares a similar barrel-like architecture with prokaryotic complexes, but is catalytically inert. Here, we investigate how the Rrp44 nuclease functions in the active ten-subunit exosome. The 3.0 A resolution crystal structure of the yeast Rrp44-Rrp41-Rrp45 complex shows how the nuclease interacts with the exosome core and the relative accessibility of its endoribonuclease and exoribonuclease sites. Biochemical studies indicate that RNAs thread through the central channel of the core to reach the Rrp44 exoribonuclease site. This channeling mechanism involves evolutionary conserved residues. It allows the processive unwinding and degradation of RNA duplexes containing a sufficiently long single-stranded 3' extension, without the requirement for helicase activities. Although the catalytic function of the exosome core has been lost during evolution, the substrate recruitment and binding properties have been conserved from prokaryotes to eukaryotes.


Assuntos
Exossomos/química , Exossomos/metabolismo , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo , Humanos , Modelos Moleculares , Saccharomyces cerevisiae/química
2.
Mol Cell ; 63(1): 125-34, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27345150

RESUMO

The RNA exosome complex associates with nuclear and cytoplasmic cofactors to mediate the decay, surveillance, or processing of a wide variety of transcripts. In the cytoplasm, the conserved core of the exosome (Exo10) functions together with the conserved Ski complex. The interaction of S. cerevisiae Exo10 and Ski is not direct but requires a bridging cofactor, Ski7. Here, we report the 2.65 Å resolution structure of S. cerevisiae Exo10 bound to the interacting domain of Ski7. Extensive hydrophobic interactions rationalize the high affinity and stability of this complex, pointing to Ski7 as a constitutive component of the cytosolic exosome. Despite the absence of sequence homology, cytoplasmic Ski7 and nuclear Rrp6 bind Exo10 using similar surfaces and recognition motifs. Knowledge of the interacting residues in the yeast complexes allowed us to identify a splice variant of human HBS1-Like as a Ski7-like exosome-binding protein, revealing the evolutionary conservation of this cytoplasmic cofactor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Proteínas de Ligação ao GTP/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Proteínas Nucleares/metabolismo , Fatores de Alongamento de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
Mol Cell ; 56(1): 43-54, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25280103

RESUMO

The Cmr complex is an RNA-guided endonuclease that cleaves foreign RNA targets as part of the CRISPR prokaryotic defense system. We investigated the molecular architecture of the P. furiosus Cmr complex using an integrative structural biology approach. We determined crystal structures of P. furiosus Cmr1, Cmr2, Cmr4, and Cmr6 and combined them with known structural information to interpret the cryo-EM map of the complex. To support structure determination, we obtained residue-specific interaction data using protein crosslinking and mass spectrometry. The resulting pseudoatomic model reveals how the superhelical backbone of the complex is defined by the polymerizing principles of Cmr4 and Cmr5 and how it is capped at the extremities by proteins of similar folds. The inner surface of the superhelix exposes conserved residues of Cmr4 that we show are required for target-cleavage activity. The structural and biochemical data thus identify Cmr4 as the conserved endoribonuclease of the Cmr complex.


Assuntos
Proteínas Arqueais/química , Pyrococcus furiosus/genética , Proteínas Arqueais/fisiologia , Sítios de Ligação , Cristalografia por Raios X , Espectrometria de Massas , Modelos Moleculares , Estrutura Terciária de Proteína , Interferência de RNA , Relação Estrutura-Atividade
4.
Mol Cell ; 37(2): 211-22, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20122403

RESUMO

Mago and Y14 are core components of the exon junction complex (EJC), an assembly central to nonsense-mediated mRNA decay in humans and mRNA localization in flies. The Mago-Y14 heterodimer shuttles between the nucleus, where it is loaded onto specific mRNAs, and the cytoplasm, where it functions in translational regulation. The heterodimer is imported back into the nucleus by Importin 13 (Imp13), a member of the karyopherin-beta family of transport factors. We have elucidated the structural basis of the Mago-Y14 nuclear import cycle. The 3.35 A structure of the Drosophila Imp13-Mago-Y14 complex shows that Imp13 forms a ring-like molecule, reminiscent of Crm1, and encircles the Mago-Y14 cargo with a conserved interaction surface. The 2.8 A structure of human Imp13 bound to RanGTP reveals how Mago-Y14 is released in the nucleus by a steric hindrance mechanism. Comparison of the two structures suggests how this unusual karyopherin might function in bidirectional nucleocytoplasmic transport.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Proteínas de Drosophila/química , Drosophila/metabolismo , Carioferinas/química , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Humanos , Carioferinas/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Alinhamento de Sequência , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo
5.
RNA Biol ; 11(8): 1072-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25483036

RESUMO

Upon pathogen invasion, bacteria and archaea activate an RNA-interference-like mechanism termed CRISPR (clustered regularly interspaced short palindromic repeats). A large family of Cas (CRISPR-associated) proteins mediates the different stages of this sophisticated immune response. Bioinformatic studies have classified the Cas proteins into families, according to their sequences and respective functions. These range from the insertion of the foreign genetic elements into the host genome to the activation of the interference machinery as well as target degradation upon attack. Cas7 family proteins are central to the type I and type III interference machineries as they constitute the backbone of the large interference complexes. Here we report the crystal structure of Thermofilum pendens Csc2, a Cas7 family protein of type I-D. We found that Csc2 forms a core RRM-like domain, flanked by three peripheral insertion domains: a lid domain, a Zinc-binding domain and a helical domain. Comparison with other Cas7 family proteins reveals a set of similar structural features both in the core and in the peripheral domains, despite the absence of significant sequence similarity. T. pendens Csc2 binds single-stranded RNA in vitro in a sequence-independent manner. Using a crosslinking - mass-spectrometry approach, we mapped the RNA-binding surface to a positively charged surface patch on T. pendens Csc2. Thus our analysis of the key structural and functional features of T. pendens Csc2 highlights recurring themes and evolutionary relationships in type I and type III Cas proteins.


Assuntos
Proteínas Arqueais/química , Proteínas Associadas a CRISPR/química , Proteínas de Ligação a RNA/química , Thermofilaceae/química , Archaea , Proteínas Arqueais/genética , Sítios de Ligação , Proteínas Associadas a CRISPR/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Cristalografia por Raios X , Interações Hospedeiro-Patógeno/genética , Conformação Proteica , RNA Arqueal/química , RNA Arqueal/genética , Proteínas de Ligação a RNA/genética
6.
RNA Biol ; 10(11): 1670-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24157656

RESUMO

The prokaryotic adaptive immune system is based on the incorporation of genome fragments of invading viral genetic elements into clusters of regulatory interspaced short palindromic repeats (CRISPRs). The CRISPR loci are transcribed and processed into crRNAs, which are then used to target the invading nucleic acid for degradation. The large family of CRISPR-associated (Cas) proteins mediates this interference response. We have characterized Methanopyrus kandleri Csm3, a protein of the type III-A CRISPR-Cas complex. The 2.4 Å resolution crystal structure shows an elaborate four-domain fold organized around a core RRM-like domain. The overall architecture highlights the structural homology to Cas7, the Cas protein that forms the backbone of type I interference complexes. Csm3 binds unstructured RNAs in a sequence non-specific manner, suggesting that it interacts with the variable spacer sequence of the crRNA. The structural and biochemical data provide insights into the similarities and differences in this group of Cas proteins.


Assuntos
Proteínas Arqueais/química , Proteínas Associadas a CRISPR/química , Euryarchaeota/metabolismo , Proteínas de Ligação a RNA/química , Sequência de Aminoácidos , Proteínas Arqueais/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Mutação Puntual , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Arqueal/genética , RNA Arqueal/metabolismo , Proteínas de Ligação a RNA/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(22): 10050-5, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20479275

RESUMO

In mammals, Up-frameshift proteins (UPFs) form a surveillance complex that interacts with the exon junction complex (EJC) to elicit nonsense-mediated mRNA decay (NMD). UPF3b is the component of the surveillance complex that bridges the interaction with the EJC. Here, we report the 3.4 A resolution crystal structure of a minimal UPF3b-EJC assembly, consisting of the interacting domains of five proteins (UPF3b, MAGO, Y14, eIF4AIII, and Barentsz) together with RNA and adenylyl-imidodiphosphate. Human UPF3b binds with the C-terminal domain stretched over a composite surface formed by eIF4AIII, MAGO, and Y14. Residues that affect NMD when mutated are found at the core interacting surfaces, whereas differences between UPF3b and UPF3a map at peripheral interacting residues. Comparison with the binding mode of the protein PYM underscores how a common molecular surface of MAGO and Y14 recognizes different proteins acting at different times in the same pathway. The binding mode to eIF4AIII identifies a surface hot spot that is used by different DEAD-box proteins to recruit their regulators.


Assuntos
Códon sem Sentido , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Éxons , Células HeLa , Humanos , Técnicas In Vitro , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estabilidade de RNA , RNA Mensageiro/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
EMBO Rep ; 11(12): 936-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21072061

RESUMO

The eukaryotic exosome is a key nuclease for the degradation, processing and quality control of a wide variety of RNAs. Here, we report electron microscopic reconstructions and pseudo-atomic models of the ten-subunit Saccharomyces cerevisiae exosome in the unbound and RNA-bound states. In the RNA-bound structures, extra density that is visible at the entry and exit sites of the exosome channel indicates that a substrate-threading mechanism is used by the eukaryotic exosome. This channelling mechanism seems to be conserved in exosome-like complexes from all domains of life, and might have been present in the most recent common ancestor.


Assuntos
Exossomos/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Exossomos/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Subunidades Proteicas/metabolismo , Capuzes de RNA/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Cell Rep ; 20(10): 2279-2286, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28877463

RESUMO

The RNA-degrading exosome mediates the processing and decay of many cellular transcripts. In the yeast nucleus, the ubiquitous 10-subunit exosome core complex (Exo-9-Rrp44) functions with four conserved cofactors (Rrp6, Rrp47, Mtr4, and Mpp6). Biochemical and structural studies to date have shed insights into the mechanisms of the exosome core and its nuclear cofactors, with the exception of Mpp6. We report the 3.2-Å resolution crystal structure of a S. cerevisiae Exo-9-Mpp6 complex, revealing how linear motifs in the Mpp6 middle domain bind Rrp40 via evolutionary conserved residues. In particular, Mpp6 binds near a tryptophan residue of Rrp40 that is mutated in human patients suffering from pontocerebellar hypoplasia. Using biochemical assays, we show that Mpp6 is required for the ability of Mtr4 to extend the trajectory of an RNA entering the exosome core, suggesting that it promotes the channeling of substrates from the nuclear helicase to the processive RNase.


Assuntos
Núcleo Celular/metabolismo , Cristalografia por Raios X/métodos , Exossomos/metabolismo , Proteínas de Membrana/metabolismo , RNA Helicases/metabolismo , RNA/metabolismo , Humanos , Ribossomos/metabolismo
10.
Cell Cycle ; 3(4): 404-7, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14752279

RESUMO

The mitotic kinases Aurora-A and Aurora-B have similar amino-acid sequences but are differently localised and regulated during cell division. The basis for their interactions with different and specific regulators is unclear. Surprisingly, our recent structural studies indicate that TPX2 regulates Aurora-A activity by binding at a site that is conserved almost completely on Aurora-B. Here we investigate molecular determinants of TPX2-Aurora-A recognition. Using structure-based mutagenesis, we show that a single amino-acid difference on the surface of the kinase catalytic domain is key to the precision with which TPX2 discriminates between Aurora-A and Aurora-B. The conservation at this amino-acid position suggests that this discriminatory mechanism is likely to be conserved in higher eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Domínio Catalítico , Drosophila , Ativação Enzimática , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Metáfase , Microtúbulos/metabolismo , Mitose , Modelos Biológicos , Modelos Moleculares , Mutação , Peptídeos/química , Fosforilação , Estrutura Terciária de Proteína , Fuso Acromático/metabolismo , Proteínas de Xenopus
11.
Biol Direct ; 8: 2, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23324115

RESUMO

BACKGROUND: Alvinella pompejana is an annelid worm that inhabits deep-sea hydrothermal vent sites in the Pacific Ocean. Living at a depth of approximately 2500 meters, these worms experience extreme environmental conditions, including high temperature and pressure as well as high levels of sulfide and heavy metals. A. pompejana is one of the most thermotolerant metazoans, making this animal a subject of great interest for studies of eukaryotic thermoadaptation. RESULTS: In order to complement existing EST resources we performed deep sequencing of the A. pompejana transcriptome. We identified several thousand novel protein-coding transcripts, nearly doubling the sequence data for this annelid. We then performed an extensive survey of previously established prokaryotic thermoadaptation measures to search for global signals of thermoadaptation in A. pompejana in comparison with mesophilic eukaryotes. In an orthologous set of 457 proteins, we found that the best indicator of thermoadaptation was the difference in frequency of charged versus polar residues (CvP-bias), which was highest in A. pompejana. CvP-bias robustly distinguished prokaryotic thermophiles from prokaryotic mesophiles, as well as the thermophilic fungus Chaetomium thermophilum from mesophilic eukaryotes. Experimental values for thermophilic proteins supported higher CvP-bias as a measure of thermal stability when compared to their mesophilic orthologs. Proteome-wide mean CvP-bias also correlated with the body temperatures of homeothermic birds and mammals. CONCLUSIONS: Our work extends the transcriptome resources for A. pompejana and identifies the CvP-bias as a robust and widely applicable measure of eukaryotic thermoadaptation.


Assuntos
Poliquetos/genética , Transcriptoma , Adaptação Biológica , Animais , DNA Complementar/química , DNA Complementar/genética , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Fontes Hidrotermais , Masculino , Oceano Pacífico , Filogenia , Poliquetos/química , Reação em Cadeia da Polimerase , RNA/química , RNA/genética , Análise de Sequência de DNA , Análise de Sequência de Proteína
12.
Nat Struct Mol Biol ; 19(4): 378-86, 2012 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-22388736

RESUMO

The ASAP complex interacts with the exon-junction complex (EJC), a messenger ribonucleoprotein complex involved in post-transcriptional regulation. The three ASAP subunits (Acinus, RNPS1 and SAP18) have been individually implicated in transcriptional regulation, pre-mRNA splicing and mRNA quality control. To shed light on the basis for and consequences of ASAP's interaction with the EJC, we have determined the 1.9-Å resolution structure of a eukaryotic ASAP core complex. The RNA-recognition motif of RNPS1 binds to a conserved motif of Acinus with a recognition mode similar to that observed in splicing U2AF proteins. The Acinus-RNPS1 platform recruits the ubiquitin-like domain of SAP18, forming a ternary complex that has both RNA- and protein-binding properties. Unexpectedly, our structural analysis identified an Acinus-like motif in Pinin, another EJC-associated splicing factor. We show that Pinin physically interacts with RNPS1 and SAP18, forming an alternative ternary complex, PSAP.


Assuntos
Proteínas de Transporte/química , Moléculas de Adesão Celular/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Nucleares/química , Ribonucleoproteínas/química , Saposinas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Proteínas Correpressoras , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA , Ribonucleoproteínas/metabolismo , Saposinas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
13.
Cell ; 131(2): 271-85, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17956729

RESUMO

The chromosomal passenger complex (CPC) is a key regulator of chromosome segregation and cytokinesis. CPC functions are connected to its localization. The complex first localizes to centromeres and later associates with the central spindle and midbody. Survivin, Borealin, and INCENP are the three components of the CPC that regulate the activity and localization of its enzymatic component, the kinase Aurora B. We determined the 1.4 A resolution crystal structure of the regulatory core of the CPC, revealing that Borealin and INCENP associate with the helical domain of Survivin to form a tight three-helical bundle. We used siRNA rescue experiments with structure-based mutants to explore the requirements for CPC localization. We show that the intertwined structural interactions of the core components lead to functional interdependence. Association of the core "passenger" proteins creates a single structural unit, whose composite molecular surface presents conserved residues essential for central spindle and midbody localization.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos/fisiologia , Proteínas Associadas aos Microtúbulos/química , Proteínas de Neoplasias/química , Fuso Acromático/fisiologia , Sequência de Aminoácidos , Aurora Quinase B , Aurora Quinases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Centrômero/genética , Centrômero/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/genética , Citocinese , Dimerização , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fuso Acromático/genética , Survivina
14.
Cell ; 126(4): 713-25, 2006 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16923391

RESUMO

The exon junction complex (EJC) plays a major role in posttranscriptional regulation of mRNA in metazoa. The EJC is deposited onto mRNA during splicing and is transported to the cytoplasm where it influences translation, surveillance, and localization of the spliced mRNA. The complex is formed by the association of four proteins (eIF4AIII, Barentsz [Btz], Mago, and Y14), mRNA, and ATP. The 2.2 A resolution structure of the EJC reveals how it stably locks onto mRNA. The DEAD-box protein eIF4AIII encloses an ATP molecule and provides the binding sites for six ribonucleotides. Btz wraps around eIF4AIII and stacks against the 5' nucleotide. An intertwined network of interactions anchors Mago-Y14 and Btz at the interface between the two domains of eIF4AIII, effectively stabilizing the ATP bound state. Comparison with the structure of the eIF4AIII-Btz subcomplex that we have also determined reveals that large conformational changes are required upon EJC assembly and disassembly.


Assuntos
Éxons , Processamento Pós-Transcricional do RNA , RNA Mensageiro/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fator de Iniciação 4A em Eucariotos/química , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Humanos , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Alinhamento de Sequência
15.
Mol Cell ; 17(4): 537-47, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15721257

RESUMO

In metazoa, regulation of the phosphorylation state of UPF1 is crucial for nonsense-mediated mRNA decay (NMD), a process by which aberrant mRNAs containing nonsense mutations are degraded. UPF1 is targeted for dephosphorylation by three related proteins, SMG5, SMG6, and SMG7. We report here the crystal structure of the N-terminal domain of SMG7. The structure reveals that SMG7 contains a 14-3-3-like domain. Residues that bind phosphoserine-containing peptides in 14-3-3 are conserved at the equivalent positions in SMG7. Mutation of these residues impairs UPF1 binding to SMG7 in vitro and UPF1 recruitment to cytoplasmic mRNA decay foci in vivo, suggesting that SMG7 acts as an adaptor in targeting mRNAs associated with phosphorylated UPF1 for degradation. The 14-3-3 site of SMG7 is conserved in SMG5 and SMG6. These data also imply that the homologous human Est1 might have a 14-3-3 function at telomeres, and that phosphorylation events may be important for telomerase regulation.


Assuntos
Proteínas de Transporte/genética , Códon sem Sentido , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas 14-3-3/química , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Citoplasma , Células HeLa , Humanos , Dados de Sequência Molecular , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Fosfosserina/química , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos
16.
Mol Cell ; 18(3): 355-67, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15866177

RESUMO

Cse1 mediates nuclear export of importin alpha, the nuclear localization signal (NLS) import adaptor. We report the 3.1 A resolution structure of cargo-free Cse1, representing this HEAT repeat protein in its cytosolic state. Cse1 is compact, consisting of N- and C-terminal arches that interact to form a ring. Comparison with the structure of cargo-bound Cse1 shows a major conformational change leading to opening of the structure upon cargo binding. The largest structural changes occur within a hinge region centered at HEAT repeat 8. This repeat contains a conserved insertion that connects the RanGTP and importin alpha contact sites and that is essential for binding. In the cargo-free state, the RanGTP binding sites are occluded and the importin alpha sites are distorted. Mutations that destabilize the N- to C-terminal interaction uncouple importin alpha and Ran binding, suggesting that the closed conformation prevents association with importin alpha.


Assuntos
Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Transporte Ativo do Núcleo Celular/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , alfa Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
17.
EMBO Rep ; 5(3): 304-10, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14968132

RESUMO

The exon junction complex (EJC) is deposited on mRNAs as a consequence of splicing and influences postsplicing mRNA metabolism. The Mago-Y14 heterodimer is a core component of the EJC. Recently, the protein PYM has been identified as an interacting partner of Mago-Y14. Here we show that PYM is a cytoplasmic RNA-binding protein that is excluded from the nucleus by Crm1. PYM interacts directly with Mago-Y14 by means of its N-terminal domain. The crystal structure of the Drosophila ternary complex at 1.9 A resolution reveals that PYM binds Mago and Y14 simultaneously, capping their heterodimerization interface at conserved surface residues. Formation of this ternary complex is also observed with the human proteins. Mago residues involved in the interaction with PYM have been implicated in nonsense-mediated mRNA decay (NMD). Consistently, human PYM is active in NMD tethering assays. Together, these data suggest a role for PYM in NMD.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Cristalografia por Raios X , Citosol/metabolismo , Dimerização , Proteínas de Drosophila/genética , Ensaio de Desvio de Mobilidade Eletroforética , Células HeLa , Humanos , Imunoquímica , Dados de Sequência Molecular , Proteínas Nucleares/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Splicing de RNA , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência
18.
J Biol Chem ; 279(3): 2176-81, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14561738

RESUMO

The transport of macromolecules between the nucleus and cytoplasm of eukaryotic cells is largely mediated by a single family of transport factors, the karyopherin or importin beta-like family. Structural and biochemical evidence suggests conformational flexibility of these modular HEAT-repeat proteins is crucial for their regulation. Here we use small angle x-ray scattering to assess the extent of conformational variation within a set of nuclear import and export factors. The study reveals that importin beta, transportin, and the exportin Xpo-t share a similar S-like superhelical conformation in their unbound state. There are no obvious differences in the overall structures that might generally distinguish nuclear export from nuclear import mediators. Two other members of the family, the exportins Cse1 and Xpo1, possess a significantly more globular conformation, indicating that the extended S-like architecture is not a hallmark of all karyopherins. Binding of RanGTP/cargo to importin beta, transportin, and Xpo-t triggers distinct conformational responses, suggesting that even closely related karyopherins employ different mechanisms of conformational regulation and that cargo and nuclear pore-interacting surfaces of the different receptors may be unique.


Assuntos
Carioferinas/química , Carioferinas/fisiologia , Conformação Proteica , Espalhamento de Radiação , Raios X , Proteína ran de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA