Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7897): 468-474, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082448

RESUMO

Ingested food and water stimulate sensory systems in the oropharyngeal and gastrointestinal areas before absorption1,2. These sensory signals modulate brain appetite circuits in a feed-forward manner3-5. Emerging evidence suggests that osmolality sensing in the gut rapidly inhibits thirst neurons upon water intake. Nevertheless, it remains unclear how peripheral sensory neurons detect visceral osmolality changes, and how they modulate thirst. Here we use optical and electrical recording combined with genetic approaches to visualize osmolality responses from sensory ganglion neurons. Gut hypotonic stimuli activate a dedicated vagal population distinct from mechanical-, hypertonic- or nutrient-sensitive neurons. We demonstrate that hypotonic responses are mediated by vagal afferents innervating the hepatic portal area (HPA), through which most water and nutrients are absorbed. Eliminating sensory inputs from this area selectively abolished hypotonic but not mechanical responses in vagal neurons. Recording from forebrain thirst neurons and behavioural analyses show that HPA-derived osmolality signals are required for feed-forward thirst satiation and drinking termination. Notably, HPA-innervating vagal afferents do not sense osmolality itself. Instead, these responses are mediated partly by vasoactive intestinal peptide secreted after water ingestion. Together, our results reveal visceral hypoosmolality as an important vagal sensory modality, and that intestinal osmolality change is translated into hormonal signals to regulate thirst circuit activity through the HPA pathway.


Assuntos
Intestinos , Saciação , Células Receptoras Sensoriais , Sede , Gânglios Sensitivos/citologia , Intestinos/citologia , Intestinos/inervação , Concentração Osmolar , Pressão Osmótica , Saciação/fisiologia , Células Receptoras Sensoriais/citologia , Sede/fisiologia , Nervo Vago/citologia , Nervo Vago/fisiologia , Água/metabolismo
2.
Nature ; 568(7750): 93-97, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918407

RESUMO

Sodium is the main cation in the extracellular fluid and it regulates various physiological functions. Depletion of sodium in the body increases the hedonic value of sodium taste, which drives animals towards sodium consumption1,2. By contrast, oral sodium detection rapidly quenches sodium appetite3,4, suggesting that taste signals have a central role in sodium appetite and its satiation. Nevertheless, the neural mechanisms of chemosensory-based appetite regulation remain poorly understood. Here we identify genetically defined neural circuits in mice that control sodium intake by integrating chemosensory and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus express prodynorphin, and that these neurons are a critical neural substrate for sodium-intake behaviour. Acute stimulation of this population triggered robust ingestion of sodium even from rock salt, while evoking aversive signals. Inhibition of the same neurons reduced sodium consumption selectively. We further demonstrate that the oral detection of sodium rapidly suppresses these sodium-appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sodium taste-but not sodium ingestion per se-is required for the acute modulation of neurons in the pre-locus coeruleus that express prodynorphin, and for satiation of sodium appetite. Moreover, retrograde-virus tracing showed that sensory modulation is in part mediated by specific GABA (γ-aminobutyric acid)-producing neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated by sodium ingestion, and sends rapid inhibitory signals to sodium-appetite neurons. Together, this study reveals a neural architecture that integrates chemosensory signals and the internal need to maintain sodium balance.


Assuntos
Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Vias Neurais/efeitos dos fármacos , Sódio/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Administração Oral , Animais , Regulação do Apetite/genética , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Encefalinas/metabolismo , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/fisiologia , Locus Cerúleo/citologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/fisiologia , Masculino , Camundongos , Motivação/efeitos dos fármacos , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Precursores de Proteínas/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Resposta de Saciedade/fisiologia , Sódio/administração & dosagem , Paladar/genética
3.
Hum Mol Genet ; 26(6): 1173-1181, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158406

RESUMO

Although periventricular nodular heterotopia (PNH) is often found in the cerebral cortex of people with thanatophoric dysplasia (TD), the pathophysiology of PNH in TD is largely unknown. This is mainly because of difficulties in obtaining brain samples of TD patients and a lack of appropriate animal models for analyzing the pathophysiology of PNH in TD. Here we investigate the pathophysiological mechanisms of PNH in the cerebral cortex of TD by utilizing a ferret TD model which we recently developed. To make TD ferrets, we electroporated fibroblast growth factor 8 (FGF8) into the cerebral cortex of ferrets. Our immunohistochemical analyses showed that PNH nodules in the cerebral cortex of TD ferrets were mostly composed of cortical neurons, including upper layer neurons and GABAergic neurons. We also found disorganizations of radial glial fibers and of the ventricular lining in the TD ferret cortex, indicating that PNH may result from defects in radial migration of cortical neurons along radial glial fibers during development. Our findings provide novel mechanistic insights into the pathogenesis of PNH in TD.


Assuntos
Córtex Cerebral/fisiopatologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Heterotopia Nodular Periventricular/fisiopatologia , Displasia Tanatofórica/fisiopatologia , Animais , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Eletroporação , Células Ependimogliais/metabolismo , Furões/genética , Furões/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Neurônios GABAérgicos/metabolismo , Humanos , Camundongos , Heterotopia Nodular Periventricular/etiologia , Heterotopia Nodular Periventricular/genética , Displasia Tanatofórica/complicações , Displasia Tanatofórica/genética
4.
Cereb Cortex ; 27(7): 3648-3659, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27384060

RESUMO

The molecular mechanisms underlying the formation of the thalamus during development have been investigated intensively. Although transcription factors distinguishing the thalamic primordium from adjacent brain structures have been uncovered, those involved in patterning inside the thalamus are largely unclear. Here, we show that Foxp2, a member of the forkhead transcription factor family, regulates thalamic patterning during development. We found a graded expression pattern of Foxp2 in the thalamic primordium of the mouse embryo. The expression levels of Foxp2 were high in the posterior region and low in the anterior region of the thalamic primordium. In Foxp2 (R552H) knockin mice, which have a missense loss-of-function mutation in the forkhead domain of Foxp2, thalamic nuclei of the posterior region of the thalamus were shrunken, while those of the intermediate region were expanded. Consistently, Foxp2 (R552H) knockin mice showed changes in thalamocortical projection patterns. Our results uncovered important roles of Foxp2 in thalamic patterning and thalamocortical projections during development.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Mutação/genética , Vias Neurais/fisiologia , Núcleos Talâmicos , Fatores Etários , Animais , Animais Recém-Nascidos , Calbindina 2/metabolismo , Desoxirribonucleases/metabolismo , Eletroporação/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor EphA8/metabolismo , Núcleos Talâmicos/embriologia , Núcleos Talâmicos/crescimento & desenvolvimento , Núcleos Talâmicos/metabolismo , Fatores de Transcrição/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteína Vermelha Fluorescente
5.
J Neurosci ; 36(21): 5775-84, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225767

RESUMO

UNLABELLED: The coordinated mechanisms balancing promotion and suppression of dendritic morphogenesis are crucial for the development of the cerebral cortex. Although previous studies have revealed important transcription factors that promote dendritic morphogenesis during development, those that suppress dendritic morphogenesis are still largely unknown. Here we found that the expression levels of the transcription factor Sox11 decreased dramatically during dendritic morphogenesis. Our loss- and gain-of-function studies using postnatal electroporation and in utero electroporation indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused precocious branching of neurites and a neuronal migration defect. We also found that the end of radial migration induced the reduction of Sox11 expression. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex. SIGNIFICANCE STATEMENT: Because dendritic morphology has profound impacts on neuronal information processing, the mechanisms underlying dendritic morphogenesis during development are of great interest. Our loss- and gain-of-function studies indicate that Sox11 is necessary and sufficient for inhibiting dendritic morphogenesis of excitatory neurons in the mouse cerebral cortex during development. Interestingly, we found that precocious suppression of Sox11 expression caused a neuronal migration defect. These findings indicate that suppression of dendritic morphogenesis by Sox11 during radial migration is crucial for the formation of the cerebral cortex.


Assuntos
Movimento Celular/fisiologia , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Dendritos/fisiologia , Neurogênese/fisiologia , Fatores de Transcrição SOXC/metabolismo , Animais , Células Cultivadas , Dendritos/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia
6.
Cereb Cortex ; 25(10): 3535-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25230944

RESUMO

Understanding the molecular mechanisms underlying the formation of selective intracortical circuitry is one of the important questions in neuroscience research. "Barrel nets" are recently identified intracortical axonal trajectories derived from layer 2/3 neurons in layer 4 of the primary somatosensory (barrel) cortex. Axons of layer 2/3 neurons are preferentially distributed in the septal regions of layer 4 of the barrel cortex, where they show whisker-related patterns. Because cadherins have been viewed as potential candidates that mediate the formation of selective neuronal circuits, here we examined the role of cadherins in the formation of barrel nets. We disrupted the function of cadherins by expressing dominant-negative cadherin (dn-cadherin) using in utero electroporation and found that barrel nets were severely disrupted. Confocal microscopic analysis revealed that expression of dn-cadherin reduced the density of axons in septal regions in layer 4 of the barrel cortex. We also found that cadherins were important for the formation, rather than the maintenance, of barrel nets. Our results uncover an important role of cadherins in the formation of local intracortical circuitry in the neocortex.


Assuntos
Caderinas/metabolismo , Neurônios/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Eletroporação , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Neurônios/citologia , Terminações Pré-Sinápticas/metabolismo , Córtex Somatossensorial/citologia
7.
Mol Cell Neurosci ; 48(3): 246-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21884798

RESUMO

To understand the fine-scale structures and functional properties of individual neurons in vivo, we developed and validated a rapid genetic technique that enables simultaneous investigation of multiple neuronal properties with single-cell resolution in the living rodent brain. Our technique PASME (promoter-assisted sparse-neuron multiple-gene labeling using in uteroelectroporation) targets specific small subsets of sparse pyramidal neurons in layer 2/3, layer 5 of the cerebral cortex and in the hippocampus with multiple fluorescent reporter proteins such as postsynaptic PSD-95-GFP and GFP-gephyrin. The technique is also applicable for targeting independently individual neurons and their presynaptic inputs derived from surrounding neurons. Targeting sparse layer 2/3 neurons, we uncovered a novel subpopulation of layer 2/3 neurons in the mouse cerebral cortex. This technique, broadly applicable for probing and manipulating neurons with single-cell resolution in vivo, should provide a robust means to uncover the basic mechanisms employed by the brain, especially when combined with in vivo two-photon laser-scanning microscopy and/or optogenetic technologies.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Animais , Contagem de Células , Córtex Cerebral/citologia , Eletroporação/métodos , Técnicas de Transferência de Genes , Camundongos , Camundongos Endogâmicos ICR , Microscopia Confocal/métodos , Neurônios/citologia , Ratos , Ratos Wistar
8.
Neuron ; 103(2): 242-249.e4, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31153646

RESUMO

For thirsty animals, fluid intake provides both satiation and pleasure of drinking. How the brain processes these factors is currently unknown. Here, we identified neural circuits underlying thirst satiation and examined their contribution to reward signals. We show that thirst-driving neurons receive temporally distinct satiation signals by liquid-gulping-induced oropharyngeal stimuli and gut osmolality sensing. We demonstrate that individual thirst satiation signals are mediated by anatomically distinct inhibitory neural circuits in the lamina terminalis. Moreover, we used an ultrafast dopamine (DA) sensor to examine whether thirst satiation itself stimulates the reward-related circuits. Interestingly, spontaneous drinking behavior but not thirst drive reduction triggered DA release. Importantly, chemogenetic stimulation of thirst satiation neurons did not activate DA neurons under water-restricted conditions. Together, this study dissected the thirst satiation circuit, the activity of which is functionally separable from reward-related brain activity.


Assuntos
Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Saciação/fisiologia , Estômago/inervação , Órgão Subfornical/citologia , Animais , Cálcio/metabolismo , Dopamina/metabolismo , Ingestão de Líquidos/fisiologia , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Optogenética , Concentração Osmolar , Fragmentos de Peptídeos/metabolismo , Estimulação Física
9.
Sci Rep ; 5: 15370, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26482531

RESUMO

One of the most prominent features of the cerebral cortex of higher mammals is the presence of gyri. Because malformations of the cortical gyri are associated with severe disability in brain function, the mechanisms underlying malformations of the cortical gyri have been of great interest. Combining gyrencephalic carnivore ferrets and genetic manipulations using in utero electroporation, here we successfully recapitulated the cortical phenotypes of thanatophoric dysplasia (TD) by expressing fibroblast growth factor 8 in the ferret cerebral cortex. Strikingly, in contrast to TD mice, our TD ferret model showed not only megalencephaly but also polymicrogyria. We further uncovered that outer radial glial cells (oRGs) and intermediate progenitor cells (IPs) were markedly increased. Because it has been proposed that increased oRGs and/or IPs resulted in the appearance of cortical gyri during evolution, it seemed possible that increased oRGs and IPs underlie the pathogenesis of polymicrogyria. Our findings should help shed light on the molecular mechanisms underlying the formation and malformation of cortical gyri in higher mammals.


Assuntos
Malformações do Desenvolvimento Cortical/etiologia , Animais , Astrócitos/metabolismo , Biomarcadores , Proliferação de Células , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Furões , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Proteínas de Homeodomínio/metabolismo , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Fenótipo , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , Displasia Tanatofórica/etiologia , Displasia Tanatofórica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA