RESUMO
Humanized mouse models are based on the engraftment of human cells in immunodeficient mouse strains, most notably the NSG strain. Most used models have a major limitation in common, the development of graft-versus-host disease (GVHD). GVHD not only introduces variabilities into the research data but also leads to animal welfare concerns. A new mouse strain, B6.129S-Rag2tm1Fwa CD47tm1Fpl Il2rgtm1Wjl/J, which lacks Rag1, IL2rg, and CD47 (triple knockout [TKO]), is resistant to GVHD development. We transplanted TKO mice with human peripheral blood mononuclear cells (PBMCs) to establish a new humanized PBMC (hu-PBMC) mouse model. A cohort of these mice was infected with HIV-1 and monitored for plasma HIV viremia and CD4+ T cell depletion. The onset and progression of GVHD were monitored by clinical signs. This study demonstrates that TKO mice transplanted with human PBMCs support engraftment of human immune cells in primary and secondary lymphoid tissues, rectum, and brain. Moreover, the TKO hu-PBMC model supports HIV-1 infection via the intraperitoneal, rectal, or vaginal route, as confirmed by robust plasma HIV viremia and CD4+ T cell depletion. Lastly, TKO mice showed a delayed onset of GVHD clinical signs (â¼24 days) and exhibited significant decreases in plasma levels of tumor necrosis factor beta (TNF-ß). Based on these results, the TKO hu-PBMC mouse model not only supports humanization and HIV-1 infection but also has a delayed onset of GVHD development, making this model a valuable tool in HIV research. IMPORTANCE Currently, there is no cure or vaccine for HIV infection; thus, continued research is needed to end the HIV pandemic. While many animal models are used in HIV research, none is used more than the humanized mouse model. A major limitation with current humanized mouse models is the development of graft-versus-host disease (GVHD). Here, we describe a novel humanized-PBMC mouse model that has a delayed onset GVHD development and supports and models HIV infection comparably to well-established humanized mouse models.
Assuntos
Transplante de Células , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/etiologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Leucócitos Mononucleares/transplante , Animais , Transplante de Células/efeitos adversos , Transplante de Células/métodos , Suscetibilidade a Doenças , Feminino , HIV-1/imunologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Pesquisa , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de TempoRESUMO
TWIST protein is critical to development and is activated in many cancers. TWIST regulates epithelial-mesenchymal transition, and is linked to angiogenesis, metastasis, cancer stem cell phenotype, and drug resistance. The majority of epithelial ovarian cancer (EOC) patients with metastatic disease respond well to first-line chemotherapy but most relapse with disease that is both metastatic and drug resistant, leading to a five-year survival rate under 20%. We are investigating the role of TWIST in mediating these relapses. We demonstrate TWIST-siRNA (siTWIST) and a novel nanoparticle delivery platform to reverse chemoresistance in an EOC model. Hyaluronic-acid conjugated mesoporous silica nanoparticles (MSN-HAs) carried siTWIST into target cells and led to sustained TWIST knockdown in vitro. Mice treated with siTWIST-MSN-HA and cisplatin exhibited specific tumor targeting and reduction of tumor burden. This platform has potential application for overcoming clinical challenges of tumor cell targeting, metastasis and chemoresistance in ovarian and other TWIST overexpressing cancers.
Assuntos
Cisplatino/uso terapêutico , Ácido Hialurônico/química , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , RNA Interferente Pequeno/química , Animais , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Neoplasias Ovarianas/metabolismo , RNA Interferente Pequeno/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Fatores de Transcrição Twist/genética , Fatores de Transcrição Twist/metabolismoRESUMO
T cells engineered to express HIV-specific chimeric antigen receptors (CARs) represent a promising strategy to clear HIV-infected cells, but to date have not achieved clinical benefits. A likely hurdle is the limited T cell activation and persistence when HIV antigenemia is low, particularly during antiretroviral therapy (ART). To overcome this issue, we propose to use a cytomegalovirus (CMV) vaccine to stimulate CMV-specific T cells that express CARs directed against the HIV-1 envelope protein gp120. In this study, we use a GMP-compliant platform to engineer CMV-specific T cells to express a second-generation CAR derived from the N6 broadly neutralizing antibody, one of the broadest anti-gp120 neutralizing antibodies. These CMV-HIV CAR T cells exhibit dual effector functions upon in vitro stimulation through their endogenous CMV-specific T cell receptors or the introduced CARs. Using a humanized HIV mouse model, we show that CMV vaccination during ART accelerates CMV-HIV CAR T cell expansion in the peripheral blood and that higher numbers of CMV-HIV CAR T cells were associated with a better control of HIV viral load and fewer HIV antigen p24+ cells in the bone marrow upon ART interruption. Collectively, these data support the clinical development of CMV-HIV CAR T cells in combination with a CMV vaccine in HIV-infected individuals.